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Abstract. Let (F,G) ∈ C[x, y]2 be a Jacobian pair and σ : (a, b) 7→ (F (a, b), G(a, b)) for (a, b) ∈
C2 the corresponding Keller map. The local bijectivity of Keller maps tells that for p ∈ C2, there

exist neighborhoods Op of p and Oσ(p) of σ(p) such that σp = σ|Op : Op → Oσ(p) is a bijection.

Thus if there exist p0, p1 ∈ C2 with p0 6= p1, σ(p0) = σ(p1), then the local bijectivity implies that

σ−1
p1 σp0 : Op0 → Op1 is a bijection between some neighborhoods of p0 and p1. We generalize this

result in various aspects, which lead us to give a proof of injectivity of Keller maps and thus the 2-

dimensional Jacobian conjecture. Among those generalizations, one is the following (cf. Theorem

1.5): For any (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ C2 × C2 satisfying p0 6= p1, σ(p0) = σ(p1), κ0 ≤

κ1|x1|κ2 ≤ κ3|x0| ≤ κ4|x1|κ5 ≤ κ6, `p0,p1 := |y1|+κ7
|x1|κ8

≥ κ9 for some preassigned κi ∈ R>0, there

exists (q0, q1) ∈ C2 × C2 satisfying the same conditions, and furthermore `q0,q1 > `p0,p1 .
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1. Main theorem

Let us start with an arbitrary Jacobian pair (F,G) ∈ C[x, y]2, i.e., a pair of polynomials on two

variables x, y with a nonzero constant Jacobian determinant

J(F,G) :=

∣∣∣∣∣
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

∣∣∣∣∣ ∈ C6=0. (1.1)

Assume that the corresponding Keller map σ : C2 → C2 sending, for p = (a, b) ∈ C2,

p 7→
(
F (p), G(p)

)
:=
(
F (a, b), G(a, b)), (1.2)
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is not injective, namely, for some p0 = (x0, y0), p1 = (x1, y1) ∈ C2,

σ(p0) = σ(p1), p0 6= p1. (1.3)

The local bijectivity of Keller maps says that for any p ∈ C2, there exist neighborhoods Op of

p and Oσ(p) of σ(p) such that σp = σ|Op is a bijection between these two neighborhoods. This

implies that σ−1
p1 σp0 : Op0 → Op1 is a bijection between some neighborhoods Op0 of p0 and Op1

of p1 (we may assume Op0 and Op1 are disjoint), i.e., any q0 ∈ Op0 is in 1–1 correspondence with

q1 ∈ Op1 such that σ(q0) = σ(q1) and q0 6= q1. In this paper we generalize this result in various

aspects, which lead us to present a proof of injectivity of Keller maps, which implies the well-known

Jacobian conjecture (see, e.g., the References).

Theorem 1.1. (Main Theorem) Let (F,G) ∈ C[x, y]2 be a Jacobian pair. Then the Keller map

σ is injective. In particular, the 2-dimensional Jacobian conjecture holds, i.e., F,G are generators

of C[x, y].

First we give some formulations. Fix (once and for all) a sufficiently large ` ∈ Z>0. Applying

the following variable change,

(x, y) 7→
(
x+ (x+ y)`, x+ y

)
, (1.4)

and rescaling F,G, we can assume, for some m ∈ Z>0,

SuppF ⊂ ∆0,ξ,η, FL = (x+ y)m, J(F,G) = 1, (1.5)

where

• SuppF :=
{

(i, j) ∈ Z2
≥0 |Coeff(F, xiyj) 6= 0

}
is the support of F [cf. Convention 2.1 (2) (iv)

for notation Coeff(F, xiyj) ],

• ∆0,ξ,η is the triangular with vertices 0 = (0, 0), ξ = (m, 0), η = (0,m),

• L is the edge of SuppF linking vertices ξ, η,

• FL, which we refer to as the leading part of F , is the part of F corresponding to the edge

L [which means that SuppFL = L ∩ SuppF = {(m− i, i) ∈ C2 | i = 0, 1, ...,m} ].

The reason we take the variable change (1.4) is to use the leading part FL of F to control F in

some sense [cf. (3.11) ], which guides us to obtain Theorem 1.3.

Throughout the paper, we use the following notations,

(p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ C2 × C2 ∼= C4, (1.6)

V =
{

(p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ C4

∣∣σ(p0) = σ(p1), p0 6= p1

}
, (1.7)

Vξ0,ξ1 =
{

(p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ V

∣∣ x0 = ξ0, x1 = ξ1

}
, (1.8)

for any ξ0, ξ1 ∈ C. Then V 6= ∅ by assumption (1.3). The main result used in the proof of Theorem

1.1 is the following.

Theorem 1.2. (i) There exist ξ0, ξ1 ∈ C such that Vξ0,ξ1 = ∅.
(ii) Fix any ξ0, ξ1 ∈ C satisfying (i). Denote, for (p0, p1) =

(
(x0, y0), (x1, y1)

)
∈ V ,

dp0,p1 = |x0 − ξ0|2 + |x1 − ξ1|2. (1.9)
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Then for any (p0, p1) ∈ V , there exists (q0, q1) =
(
(ẋ0, ẏ0), (ẋ1, ẏ1)

)
∈ V such that

dq0,q1 < dp0,p1 . (1.10)

After a proof of this result, it is then not surprising that it can be used to give a proof of Theorem

1.1 by taking some kind of “limit” [cf. (7.2) ], which can guide us to derive a contradiction. We

would like to mention that at a first sight, Theorem 1.2 (i) seems to be obvious, however its proof

is highly nontrivial to us, it needs several results, which we state below. Here is the first one.

Theorem 1.3. Denote, for (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ V ,

hp0,p1 = max
{
|x1|, |y1|, |x0|, |y0|

}
, (1.11)

and call hp0,p1 the height of (p0, p1). There exists s0 ∈ R>0 (depending on m = degF, degG

and coefficients of F and G; cf. Remark 3.5) satisfying the following: For any (p0, p1) =(
(x0, y0), (x1, y1)

)
∈ V with

hp0,p1 ≥ s0, (1.12)

we must have

|x0 + y0| < h
m
m+1

p0,p1
, |x1 + y1| < h

m
m+1

p0,p1
. (1.13)

In particular if hp0,p1 = max
{
|xt|, |yt|

}
for some t ∈ {0, 1} , then,

|a− b| < n
m+1
m+2

t
, (1.14)

for any a, b ∈
{
|xt|, |yt|, hp0,p1

}
, where nt = min

{
|xt|, |yt|

}
.

To prove Theorem 1.2 (i), we assume conversely that, for all ξ0, ξ1 ∈ C,

Vξ0,ξ1 6= ∅. (1.15)

Then we are able to obtain the following.

Theorem 1.4. Under the assumption (1.15), we have the following.

(i) The following subset of V is a nonempty closed bounded subset of C4 for any k0, k1 ∈ R≥0,

Ak0,k1 =
{

(p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ V

∣∣ |x0| = k0, |x1| = k1

}
. (1.16)

(ii) The following is a well-defined function on k0, k1 ∈ R≥0,

γk0,k1 = max
{
|y1|

∣∣ (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ Ak0,k1

}
. (1.17)

(iii) The γk0,k1 is an “almost strictly” increasing function on both variables k0, k1 ∈ R≥0 in

the following sense [we need to require k0 > 0 in (1.18) (b), that is why we use the words

“almost strictly” ],

(a) γk′0,k1 >γk0,k1 if k′0 > k0 ≥ 0, k1 ≥ 0,

(b) γk0,k′1 >γk0,k1 if k0 > 0, k′1 > k1 ≥ 0. (1.18)

This result is then used to prove the following (which is the hardest part of the paper).

Theorem 1.5. (1) There exist κi ∈ R>0, such that the following hold.
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(i) Denote by V0 the subset of V such that all its elements (p0, p1) =
(
(x0, y0), (x1, y1)

)
simultaneously satisfy one (and the only one) of (1.19) or (1.20). Then V0 6= ∅.

(a) κ0 ≤ κ1|x1|κ2 ≤ κ3|x0|≤ κ4|x1|κ5 ≤ κ6, (b) `p0,p1 :=
|y1|+κ7

|x1|κ8
≥ κ9; (1.19)

(a) κ0 ≤ |f1|κ1 ≤ |f2| ≤ |f3|κ2 ≤ κ3, (b) κ4|f1|−κ5 ≤ |x0| ≤ κ6,

(c) κ7|f1|κ8 ≤ |x1| ≤ κ9, (d) `p0,p1 := |f4f
κ10
1 |+ |x1|+ |y1| ≥ κ11, (1.20)

where, fi’s are some locally smooth functions on x0, x1, y1, and κi will be chosen such

that there exist θi ∈ R>0 satisfying: when conditions hold, we have

θ0 ≤ |x0|, |x1| ≤ θ1, |y1| ≥ θ0. (1.21)

(ii) For any (p0, p1) ∈ V0, no equality can occur in the first or last inequality of (1.19) (a)

or (1.20) (a), or in the any inequality of (1.20) (b) or (c) ; further, two equalities can-

not simultaneously occur in the second and third inequalities of (1.19) (a) or (1.20) (a).

(2) For any (p0, p1) ∈ V0, there exists (q0, q1) =
(
(ẋ0, ẏ0), (ẋ1, ẏ1)

)
∈ V0 such that

`q0,q1 > `p0,p1 . (1.22)

Remark 1.6. (1) Throughout the paper, we will frequently use the local bijectivity of Keller

maps. Theorem 1.5 (2) says that [assume for example, we have case (1.19) ]

(a) κ0 ≤ κ1|ẋ1|κ2 ≤ κ3|ẋ0| ≤ κ4|ẋ1|κ5 ≤ κ6, (b)
|ẏ1|+ κ7

|ẋ1|κ8
>
|y1|+ κ7

|x1|κ8
,

(c) σ(q0) = σ(q1), (d) q0 6= q1. (1.23)

If we regard ẋ0, ẏ0, ẋ1, ẏ1 as 4 free variables, then the local bijectivity always allows us to

obtain (1.23) (c), which imposes two restrictions on 4 variables. We can impose at most

two more “nontrivial” restrictions on them [we regard (1.23) (d) as a trivial restriction, see

below]. The main difficulty for us is how to impose two more “solvable” restrictions on

variables [see (3) below] to control ẋ0, ẏ0, ẋ1, ẏ1 in order to achieve our goal of “deriving a

contradiction”. However, it seems to us that two more restrictions are always insufficient

to achieve the goal. Here, condition (1.23) (b) imposes one more restriction, and we have

one free variable left. However there are 4 restrictions in (1.23) (a), thus in general there

will be no solutions. Thanks to Theorem 1.5 (1) (ii) [see (2) below], we only need to take

care of one restriction in (1.23) (a) each time [cf. (6.6) ] since we are always under a “local”

situation (i.e., we are only concerned with a small neighborhood of some points each time),

and thus the inequation in (1.23) (a) is solvable [we do not need to consider condition

(1.23) (d) under the “local” situation, we only need to take care of it when we take some

kind of “limit”, cf. (7.2) ].

(2) Condition (1.23) (b) is not only used to control |ẋ1| and |ẏ1|, but also used to take the

“limit”; while (1.23) (a) is used to control |ẋ0| and |ẋ1|. We remark that the requirement

“κ7 > 0” in (1.19) (b) [or the last two terms in (1.20) (c) ] will guarantee that the corre-

spondent inequation (1.23) (b) is solvable [see (3) below, cf. Remark 6.2 ]. Finally we would

like to mention that to find conditions like the ones in (1.19) or (1.20) satisfying Theorem
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1.5 (1) (ii) has been extremely difficult for us, we achieve this by using Theorem 1.4 to

prove several technical lemmas (cf. Assumption 5.1 and Lemmas 5.2–5.11).

(3) One may expect to have some statements such as one of the following:

(i) For any (p0, p1) ∈ V with |x0|θ0 + |x1|θ1 ≤ s (for some θi, s ∈ R>0), there exists

(q0, q1) ∈ V such that

(a) |ẋ0|θ0 + |ẋ1|θ1 ≤ s, (b) |ẏ1|θ2 > |y1|θ2 . (1.24)

(ii) For any (p0, p1) ∈ V with |x1|θ1 ≤ |y1|θ2 + s, there exists (q0, q1) ∈ V such that

(a) |ẋ1|θ1 ≤ |ẏ1|θ2 + s, (b) |ẏ0|θ3 − |ẋ0|θ4 > |y0|θ3 − |x0|θ4 . (1.25)

If a statement such as one of the above could be obtained, then a proof of Theorem 1.1

would be easier. At a first sight, the condition (1.24) (a) [or (1.10) ] only imposes one

restriction on variables, however it in fact contains 2 hidden restrictions [see arguments

after (7.7) ] simply because the left-hand side of “≤ ” has 2 positive terms with absolute

values containing variables. The second condition in (1.25) is unsolvable as will be explained

in Remark 6.2. We would also like to point out that to obtain Theorem 1.1, we always

need to take some kind of “limit” [cf. (7.2) ] to derive a contradiction. Thus some condition

such as (1.10), (1.23) (b), (1.24) (b) or (1.25) (b) is necessary in order to take the “limit”.

2. Some preparations

We need some conventions and notations, which, for easy reference, are listed as follows.

Convention 2.1. (1) A complex number is written as a = are + aimi for some are, aim ∈ R,

where i =
√
−1. If ab appears in an expression, then we always assume b ∈ R, and in case

a 6= 0, we interpret ab as the unique complex number rbebθi by writing a = reθi for some

r ∈ R>0, −π < θ ≤ π and e is the natural number.

(2) Let P =
∑

i∈Z≥0
piy

α+i ∈ C(x)((y)) with α ∈ Z, pi ∈ C(x).

(i) Assume p0 = 1. For any β ∈ Q with αβ ∈ Z, we always interpret P β as

P β = yαβ
(

1 +
∞∑
j=1

(
β

j

)( ∑
i∈Z>0

piy
i
)j)
∈ C(x)((y)), (2.1)

where in general, we denote the multi-nomial coefficient(
k

λ1, λ2, ..., λi

)
=
k(k − 1) · · · (k − (λ1 + λ2 + · · ·+ λi) + 1)

λ1!λ2! · · ·λi!
. (2.2)

Then

(P β)β
′

= P ββ
′
, (2.3)

for any β ∈ Q, β′ ∈ Z with αβ, αββ′ ∈ Z. If p0 6= 1, then pβ0 is in general a multi-

valued function on p0, and if we fix a choice of pβ0 , then (2.3) only holds when β′ ∈ Z
[fortunately we will only encounter this situation, cf. (3.23) and statements after it].

(ii) For Q1, Q2 ∈ C(x)((y)), we use the following notation [as long as it is algebraically a

well-defined element in C(x)((y)) ]

P (Q1, Q2) = P |(x,y)=(Q1,Q2) =
∑
i
pi(Q1)Qα+i

2 . (2.4)
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(iii) If Q1, Q2 ∈ C, and Q2 6= 0 in case (2.4) contains some negative powers of Q2, we

also use (2.4) to denote a well-defined complex number as long as pi(Q1) exists for all

posible i and the series (2.4) converges absolutely.

(iv) For any Q =
∑

i∈Z≥0
qiy

β+i ∈ C(x)((y)), by comparing coefficients of yβ+i for i ≥ 0,

there exists uniquely bi ∈ C(x) such that

Q =
∞∑
i=0
biP

β+i
α . (2.5)

We call bi the coefficient of P
β+i
α in Q, and denote by Coeff(Q,P

β+i
α ). If Q =∑

i,j qijx
iyj with qij ∈ C, we also denote Coeff(Q, xiyj) = qij .

(3) Throughout the paper, we need two (and sometimes more) independent parameters k � 1

(i.e., k →∞) and E → 0. We use the following convention: Symbols s, sj for j ≥ 0 always

denote some (possibly sufficiently large) numbers independent of E, k . We use O(E)i for

i ∈ Q≥0 to denote any element P in C(x)((y)) (or especially in C) such that P (ẋ, ẏ)

converges absolutely and |E−iP (ẋ, ẏ)| < s for some fixed s, where (ẋ, ẏ) is in some required

region which will be specified in the context.

Let P =
∑

j pjy
j ∈ C(x)((y)), pj ∈ C(x), and (x0, y0) ∈ C2 with y0 6= 0. If pj(x0) exists for all

possible j, and z0 =
∑

j |pj(x0)yj0| converges, then z0 is called the absolute converging value of P

at (x0, y0), denoted by A(x0,y0)(P ) [or by A(y0)(P ) if P does not depend on x].

Definition 2.2. (1) Let P be as above and Q =
∑

i qiy
i ∈ C((y)), qi ∈ R≥0, x0 ∈ C. If pi(x0)

exists and
|pi(x0)| ≤ qi, (2.6)

for all possible i, then we say Q is a controlling function for P on y at point x0, and denote

P Ex0y Q or Q Dx0y P , (2.7)

or P Ey Q or Q Dy P when there is no confusion. In particular if P,Q do not depend on

y then we write P Ex0 Q or Q Dx0 P (thus a E b for a, b ∈ C simply means that |a| ≤ b

with b ≥ 0).

(2) An element in C((y)) with non-negative coefficients (such as Q above) is called a controlling

function on y.

(3) If Q = q0y
α +

∑
j>0 qjy

α+j ∈ C((y)) is a controlling function on y with qi ∈ R≥0 and

q0 > 0, then we always use the same symbol with subscripts “ igo ” and “ neg ” to denote

the elements

Qigo =q−1
0

∑
j>0

qjy
j , Qneg :=q0y

α
(

1−q−1
0

∑
j>0

qjy
j
)

=q0y
α(1−Qigo)=2q0y

α−Q. (2.8)

We call Qigo the ignored part of Q, and Qneg the negative correspondence of Q [in sense of

(2.10) and (2.11), where a,−k are nonpositive].

Lemma 2.3. (1) If

P = p0y
α +

∑
j>0

pjy
α+j ∈ C(x)((y)), Q = q0y

α +
∑
j>0

qjy
α+j ∈ C((y)), (2.9)
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with P Ex0y Q, x0 ∈ C and |p0(x0)| = q0 ∈ R>0, then

(a)
∂P

∂y
Ex0y ± dQ

dy
, (b) P a Ex0y Qaneg Ey (q0y

α)−bQa+b
neg for a, b ∈ Q−, (2.10)

Qk Ey (q0y
α)2kQ−kneg Ey


(q0y

α)k

1− kQigo
if k ∈ Z≥1,

(q0y
α)k
(

1 +
kQigo

1−Qigo

)
if k ∈ Q≥0 with k < 1.

(2.11)

where (2.10) (a) holds under the condition: either both P and Q are power series of y (in

this case the sign is “ + ” ), or else both are polynomials on y−1 (in this case the sign is

“− ” ).

(2) If x0, y0 ∈ C with y0 6= 0, and P1 Ex0y Q1, P2 Ex0y Q2, then

A(x0,y0)(P1P2) ≤ A(y0)(Q1)A(y0)(Q2) = Q1(|y0|)Q2(|y0|). (2.12)

Proof. One can see that (2) and (2.10) (a) are obvious, and (2.10) (b), (2.11) are obtained by

noting that for a, b ∈ Q− and i ∈ Z>0, one has

(−1)i
(
a

i

)
=
∣∣∣(a
i

)∣∣∣≤ ∣∣∣(a+ b

i

)∣∣∣=(−1)i
(
a+ b

i

)
,

(
k

i

)
≤
∣∣∣(−k

i

)∣∣∣≤ {ki if k∈Z≥1,

k if 0<k∈Q<1.

This proves the lemma. �

Take

F̃ = f̃1y +
∞∑
i=2

f̃iy
i ∈ C[x][[y]], (2.13)

with f̃i ∈ C[x] and f̃1 6= 0. Regarding F̃ as a formal function on y (with parameter x being regarded

as fixed), we have the formal inverse function denoted by yF̃ ∈ C[x, f̃−1
1 ][[F̃ ]] ⊂ C(x)[[F̃ ]] such

that [cf. (2.5) ]

y = yF̃ (F̃ ) = b1F̃ +
∞∑
i=2

biF̃
i, (2.14)

with bi = Coeff(y, F̃ i) ∈ C[x, f̃−1
1 ] being determined by b1 = f̃−1

1 ∈ C[x, f̃−1
1 ] and (we do not need

to use the following explicit expression of bi, we only want to present that bi’s exist)

bi = −
i−1∑
j=1

bj f̃
j−i
1

j∑̀
=0

(
j

`

) ∑
n∈Z≥0, λ1,λ2,...,λn≥0

λ1+2λ2+···+nλn= i−j

(
`

λ1, λ2, ..., λn

)
f̃−λ1−λ2−···−λn1 f̃λ22 f̃λ33 · · · f̃

λn
n , (2.15)

for i ≥ 2, which is obtained by comparing the coefficients of yi in (2.14).

Lemma 2.4. For âi ∈ R≥0 with â1 > 0, let

F̂ = â1y +
∞∑
i=2

âiy
i ∈ C[[y]] and F̂neg = â1y −

∞∑
i=2

âiy
i, (2.16)
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be a controlling function on y and its negative correspendence [cf. (2.8) ], and let

y = y neg(F̂neg) = b̂1F̂neg +
∞∑
i=2

b̂iF̂
i
neg, (2.17)

be the formal inverse function of F̂neg, where b̂1 = â−1
1 and b̂i = Coeff(y, F̂

i
neg) ∈ C. Then

(1) y neg(F̂neg) is a controlling function on F̂neg, i.e., for i ≥ 1,

b̂i = Coeff(y, F̂
i
neg) ≥ 0. (2.18)

(2) If F̃ Ex0y F̂ with F̃ as in (2.13) and f̃i(x0) exists for all possible i and |f̃1(x0)| = â1, then

y = yF̃ (F̃ )Ex0
F̃
y neg(F̃ ), i.e., bi Ex0 b̂i, (2.19)

where bi = Coeff(y, F̃ i) is as in (2.14), and biEx0 b̂i means that |bi(x0)| ≤ b̂i. In particular

y Ey y neg(F̂ ), (2.20)

where the right side of “Ey ” is regarded as a function on y by substituting F̂ by (2.16).

Proof. Note that (1) follows from (2) by simply taking F̃ = â1y. Thus we prove (2). We want to

prove, for i ≥ 1,

∂iy

∂F̃ i
Ex0y

diy

dF̂ i
neg

, (2.21)

where the left-hand side is understood as that we first use (2.14) to regard y as a function on F̃

(with parameter x) and apply ∂i

∂F̃ i
to it, then regard the result as a function on y (and the like for

the right-hand side, which does not contain the parameter x). By (2.10) (a), we have ∂F̃
∂y E

x0
y

dF̂
dy ,

and thus by (2.10) (b), (
∂F̃

∂y

)−1

Ex0y

((dF̂
dy

)
neg

)−1

=

(
dF̂neg

dy

)−1

,

i.e., ∂y

∂F̃
Ex0y

dy

dF̂ neg
and (2.21) holds for i = 1. Inductively, by Lemma 2.3,

∂iy

∂F̃ i
=

∂

∂F̃

( ∂i−1y

∂F̃ i−1

)
=

∂

∂y

( ∂i−1y

∂F̃ i−1

)(∂F̃
∂y

)−1

Ex0y
d

dy

( di−1y

dF̂ i−1
neg

)(dF̂neg

dy

)−1
=

diy

dF̂ i
neg

. (2.22)

This proves (2.21). Using (2.21) and noting from (2.14) and (2.17), we have

bi =
1

i!

∂iy

∂F̃ i

∣∣∣
F̃=0

=
1

i!

∂iy

∂F̃ i

∣∣∣
y=0

Ex0
1

i!

diy

dF̂ i
neg

∣∣∣
y=0

=
1

i!

diy

dF̂ i
neg

∣∣∣
F̂ neg=0

= b̂i.
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This proves (2.19). Since F̃ Ex0y F̂ and y neg is a controlling function, we have y neg(F̃ )Ex0y y neg(F̂ ).

This together with (2.19) proves (2.20). �

3. Proof of Theorem 1.3

First we use (1.13) to prove (1.14): Assume hp0,p1 = |yt|, nt = |xt| (for t = 0 or 1; the proof for

the case hp0,p1 = |xt|, nt = |yt| is exactly similar). Then the only nontrivial case in (1.14) is the

case when a = |yt|, b = |xt|. In this case, we have

|a− b| =
∣∣∣|yt| − |xt|∣∣∣ ≤ |yt + xt|

< h
m
m+1

p0,p1
= |yt|

m
m+1 < |xt|

m+1
m+2 = n

m+1
m+2

t
, (3.1)

where the last inequality follows from the fact that by (1.13), we have (when |yt| = hp0,p1 ≥ s0 is

sufficiently large)

|xt| > |yt| − h
m
m+1

p0,p1
= |yt| − |yt|

m
m+1 > |yt|

m(m+2)

(m+1)2 . (3.2)

To prove (1.13), assume conversely that there exists (p0i, p1i) =
(
(x0i, y0i), (x1i, y1i)

)
∈ V for

any i ∈ Z>0 satisfying

hp0i,p1i ≥ i, (3.3)

such that at least one of the following does not hold:

(i) |x0i + y0i| < h
m
m+1

p0i,p1i
, (ii) |x1i + y1i| < h

m
m+1

p0i,p1i
. (3.4)

Thus we obtain a sequence (p0i, p1i), i = 1, 2, ... Since at least one of the conditions in (3.4) cannot

hold for infinite many i’s, if necessary by replacing the sequence by a subsequence [if the sequence

(p0i, p1i) is replaced by the subsequence (p0,ij , p1,ij ), then we always have ij ≥ j; thus (3.3) still

holds after the replacement], we may assume one of the conditions in (3.4) does not hold for all i.

If necessary by switching p0i and p1i, we can assume (3.4) (i) cannot hold for all i, i.e.,

|x0i + y0i| ≥ h
m
m+1

p0i,p1i
→∞, (3.5)

for all i� 1. We need to use the following notations:

ai ∼ bi, ai ≺ bi, ai � bi, (3.6)

which mean respectively

s1 <
∣∣∣ai
bi

∣∣∣ < s2, lim
i→∞

ai
bi

= 0,
∣∣∣ai
bi

∣∣∣ ≤ s1,

for some fixed s1, s2 ∈ R>0. By (1.5), we can write, for some fjk ∈ C,

F = FL + F1 with F1 =
m−1∑
j=0

ym−1−j
j+1∑
k=0

fjkx
k. (3.7)

Since |x0i|, |y0i| ≤ hp0i,p1i , by (3.5) and (3.7) (which shows that degF1 ≤ m− 1), we have

F1(p0i) � h
m−1

p0i,p1i
≺ (x0i + y0i)

m = FL(p0i), (3.8)
9



and thus [we remark that although it is possible that (x0i + y0i)
m ≺ hmp0i,p1i , it is very crucial that

we have (3.9) ]

F (p0i) ∼ FL(p0i) = (x0i + y0i)
m. (3.9)

Similarly, F1(p1i) � h
m−1

p0i,p1i
≺ (x0i + y0i)

m = FL(p0i). We obtain the following important fact:

1 =
F (p1i)

F (p0i)
= lim

i→∞

F (p1i)

F (p0i)

= lim
i→∞

FL(p1i)
FL(p0i)

+ F1(p1i)
FL(p0i)

1 + F1(p0i)
FL(p0i)

= lim
i→∞

FL(p1i)

FL(p0i)
= lim

i→∞

(x1i + y1i)
m

(x0i + y0i)m
. (3.10)

Therefore, by replacing the sequence by a subsequence, we have

lim
i→∞

x1i + y1i

x0i + y0i
= ω, (3.11)

where ω is some m-th root of unity. Furthermore, when i � 1, by (3.5) we have [cf. Convention

2.1 (3) ]

E :=
h
m−1

p0i,p1i

βm
0

→ 0, where β0 := x0i + y0i. (3.12)

Here and below, we remark that the notation “ a→ b ” means that a is sufficiently close to b. Set

β1 :=
x1i + y1i

x0i + y0i
− 1 → ω − 1. (3.13)

Remark 3.1. Before continuing, we would like to remark that our idea is to take some variable

change [cf. (3.16) ] to send the leading part FL of F to a “leading term” [cf. (3.20) ], which has the

highest absolute value when (x, y) is set to p0i or p1i [cf. (3.22) ] so that when we expand it as a

power series of y, it converges absolutely [cf. (3.25) ], and further, the inverse function converges

absolutely (cf. Lemma 3.3). Then we can derive a contradiction [cf. (3.49) ].

Proof of Theorem 1.3. Now we begin our proof of (1.13) in Theorem 1.3 as follows. Since x0i 6= x1i

or y0i 6= y1i for all i, replacing the sequence by a subsequence we may assume that either x0i 6= x1i

for all i or else y0i 6= y1i for all i. By symmetry, we can assume x0i 6= x1i for all i. Set [where

i =
√
−1, cf. the statement after (3.21) to see why we need to choose such a β2]

u1 = 1 + β1x+ β2x(1− x) ∈ C[x], where β2 =

{
0 if ω 6= −1,

i else.
(3.14)

We have

Lemma 3.2. There exists some δ > 0 independent of E such that for all a ∈ R≥0 with 0 ≤ a ≤ 1,

when i� 1, we have

|u1(a)| > δ. (3.15)

Proof. Fix δ1 ∈ R>0 to be sufficiently small.

• First assume ω = 1 (then β2 = 0). By (3.13), we can then assume |β1| < δ1. Then for a

with 0 ≤ a ≤ 1, we have |u1(a)| ≥ 1− |β1|a ≥ 1− δ1.
10



• Next assume ω = −1 (then β2 = i). We can then assume |β1 im| < δ2
1 [cf. Convention

2.1 (1) ] and 2− δ2
1 ≤ |β1 re| ≤ 2 + δ2

1 by (3.13). For a with δ1 ≤ a ≤ 1− δ1, we have

|u1(a)| ≥ |u1(a)im| =
∣∣β1 ima+ β2 ima(1− a)

∣∣ ≥ a(1− a)− |β1 im|a ≥ δ1(1− δ1)− δ2
1 .

If 0 ≤ a ≤ δ1, we have |u1(a)| ≥ |u1(a)re| = |1 + β1 rea| ≥ 1− (2 + δ2
1)δ1. If 1− δ1 ≤ a ≤ 1,

then |u1(a)| ≥ |u1(a)re| = |1 + β1 rea| ≥ (2− δ1)(1− δ1)− 1.

• Now assume ω 6= ±1 (then β2 = 0). We can then assume |β1 im| ≥ δ1 and |β1| ≤ 2 + δ1.

If 0 ≤ a ≤ δ1, we have |u1(a)| ≥ 1 − |β1|δ1 ≥ 1 − (2 + δ1)δ1. If δ1 ≤ a ≤ 1, then

|u1(a)| ≥ |u1(a)im| = |β1 im|δ1 ≥ δ2
1 .

In any case we can choose a unified δ > 0 such that (3.15) holds. �

Now we fix a sufficiently large i [thus E > 0 defined in (3.12) is sufficiently small]. Set [cf. Remark

3.1, our purpose is to use the variable change (3.17) to send the leading part FL of F to the element

(3.20) which is a term (the “leading term”) with the lowest degree of y in F̂ , cf. (3.21) ]

u = x0i + β3x, v = β0u1y
−1 − u, β3 = x1i − x0i, (3.16)

F̂ = β−m0 F (u, v), Ĝ = −βm−1
0 β−1

3 G(u, v) ∈ C[x, u−1
1 , y±1] ⊂ C(x)[y±1]. (3.17)

Then one can easily verify that J(u, v) = du
dx

∂v
∂y = −β0β3u1y

−2 and

u|(x,y)=(0,1) = x0i, u|(x,y)=(1,1) = x1i, v|(x,y)=(0,1) = y0i, v|(x,y)=(1,1) = y1i. (3.18)

Thus we have, for q0 = (0, 1), q1 = (1, 1),

J(F̂ , Ĝ) = u1y
−2,

(
F̂ (q0), Ĝ(q0)

)
=
(
F̂ (q1), Ĝ(q1)

)
. (3.19)

Note that the leading part FL of F contributes to F̂ the following element (which is the only term

in F̂ with the lowest y-degree −m, referred to as the leading term of F̂ ):

β−m0 FL|(x,y)=(u,v) = β−m0 (u+ v)m = um1 y
−m. (3.20)

Since all coefficients of x and y−1 in u or v have absolute values being � the height hp0i,p1i

[cf. (3.16) ], due to the factor β−m0 in F̂ [cf. (3.17) ], we see from (3.7) and (3.12) that other terms

of F (i.e., terms in F1) can only contribute O(E)1 elements to F̂ [cf. Convention 2.1 (3) for notation

O(E)j ]. Thus we can write, for some fj = u−m1 f̂j ∈ C[x, u−1
1 ] ⊂ C(x) with f̂j = O(E)1,

F̂ = um1 y
−m
(

1 +
m∑
j=1

fjy
j
)
. (3.21)

By (3.15), we see that fj(a) for 0 ≤ a ≤ 1 is well-defined for any j and fj(a) = O(E)1 [this is why

we need to choose some β2 to satisfy (3.15) ]. Set

s1 = max
{
|fj(a)|

∣∣ 1 ≤ j ≤ m, 0 ≤ a ≤ 1
}

= O(E)1. (3.22)
11



Let 0 ≤ a ≤ 1. Take [here we choose an m-th root of um1 to be u1, this choice will not cause any

problem since we will only encounter integral powers of u1 below, cf. (2.3) ]

P := F̂−
1
m ∈ u−1

1 y + y2C(x)[[y]], (3.23)

F̂ = |u1(a)|my−m(1 + F̂−), where F̂− = s1

m∑
j=1

yj = O(E)1. (3.24)

We have (cf. Definition 2.2 and Lemma 2.3),

F̂ Eay F̂ , P Eay P̂ := |u1(a)|−1y(1− F̂−)−
1
m . (3.25)

Thus F̂ , P converges absolutely [by Lemma 2.3 (3) ] when setting x = a and y = 1. Let

P0 := P |(x,y)=(0,1) = 1 +O(E)1, (3.26)

where the last equality can be easily seen from (3.21) and (3.23) by noting that u1(0) = 1. Write

[cf. (2.5) and (2.14) ]

(i) y = u1P +
∞∑
j=2

bjP
j , (ii) Ĝ =

∞∑
j=−mG

cjP
j , (3.27)

for some bi, ci ∈ C[x, u−1
1 ], where we assume that Ĝ has the lowest y-degree −mG. To continue

the proof of Theorem 1.3, we need the following lemma. First, let 0 ≤ a ≤ 1.

Lemma 3.3. (1) The series in (3.27) (i) converges absolutely when setting (x, P ) to (a, P0),

and

Y0(a) := y|(x,P )=(a,P0) = u1(a) +O(E)1. (3.28)

(2) Regarding
(
∂F̂
∂y

)−1
as a series of P , it converges absolutely when setting (x, P ) to (a, P0).

Furthermore, (∂F̂
∂y

)−1∣∣∣
(x,P )=(a,P0)

= −m−1u1(a) +O(E)1. (3.29)

(3) The series in (3.27) (ii) converges absolutely when setting (x, P ) to (a, P0).

Proof. (1) (cf. Remark 3.4 for a simpler proof) Note that the negative correspondence of P̂ is

[cf. (2.8) ]

P̂neg := 2|u1(a)|−1y − P̂ = 2|u1(a)|−1y − |u1(a)|−1y(1− F−)−
1
m . (3.30)

Let y neg = y neg(P̂neg) be the inverse function of P̂neg [cf. (2.17) ]. Then Lemma 2.4 shows that

y(P ) EaP y neg(P ). (3.31)

Thus to see whether the series in (3.27) (i) [which is the left-hand side of (3.31) ] converges abso-

lutely when setting (x, P ) to (a, P0), it suffices to see if the series y neg(P ) [which is the right-hand

side of (3.31) ] converges when setting P to |P0|. The latter is equivalent to whether (3.30) has the

solution for y when P̂neg is set to |P0| (note that the solution, if exists, must be unique by noting

that the inverse function of P̂neg is a controlling function and a controlling function which is a

nontrivial power series of y must be a strictly increasing function). Note from (3.26) that there
12



exist some w ∈ R and some fixed numbers s2, s3 ∈ R>0 (i.e., s2, s3 are independent of E) such

that

|P0| = 1 + w with −s2E ≤ w ≤ s3E. (3.32)

Consider the right-hand side of (3.30):

• if we set y to |u1(a)| − s4E for some sufficiently large s4, then it obviously has some value

1 + w1 with w1 < −s2E ≤ w;

• if we set y to |u1(a)| + s5E for some sufficiently large s5, then it has some value 1 + w2

with w2 > s3E ≥ w.

Since the right-hand side of (3.30) is a continuous function on y, this shows that there exists

(unique) y0 ∈ R>0 such that

P̂neg|y=y0 = |P0|, and obviously, y0 = |u1(a)|+O(E)1, (3.33)

i.e., (3.30) has the solution y = y0 when P̂neg is set to |P0|, and thus the first part of (1) follows.

As for (3.28), note that Y0(a) is the solution of y in the equation P0 = P |x=a. Using (3.28) in this

equation, we see that it holds up to O(E)1.

(2) By Lemmas 2.3 and 2.4, using (3.23)–(3.25), we have(∂F̂
∂y

)−1
Eay

ym+1

m|u1(a)|m(1−Q−)
EP

ym+1

m|u1(a)|m(1−Q−)

∣∣∣
y=y neg(P )

, (3.34)

where Q− is the following [then the part “Eay ” in (3.34) follows from (3.24); the second equality

below follows from the fact in (3.22) that s1 = O(E)1 ]

Q− = s1

m∑
j=1

∣∣∣m− j
m

∣∣∣yj = O(E)1. (3.35)

The right-hand side of (3.34) (a controlling function) converges obviously when setting P to |P0|
since by (3.33), we have y neg(|P0|) = y0 = |u1(a)|+O(E)1 and so by (3.35),

0 ≤ Q−
∣∣
y=y neg(|P0|) = O(E)1 < 1. (3.36)

This proves the first statement of (2) [cf. (2.12) ]. As for the second statement, note that setting

(x, P ) to (a, P0) is equivalent to setting (x, y) to
(
a, Y0(a)

)
. Then (3.29) follows from (3.21), (3.22)

and (3.28).

(3) follows from (1) since Ĝ|x=a is a polynomial on y±1 [cf. (3.44) and the statement after it].

This proves Lemma 3.3. �

Remark 3.4. Let a ∈ R with 0 ≤ a ≤ 1. By (3.21), we can choose sufficiently small fixed η ∈ R>0

such that for E1 = Eη, we have

F̂ Eay |u1(a)|my−m
(

1 +
m∑
j=1
Ej1y

j
)
Ey |u1(a)|my−m

∞∑
j=0
Ej1y

j =
|u1(a)|my−m

1− E1y
. (3.37)

Thus by (2.10) (b), we have

P = F̂−
1
m Ey |u(a)|−1y

(
1−

∞∑
j=1
Ej1y

j
)−1

= |u(a)|−1y
(

1− E1y

1−E1y

)−1
= |u(a)|−1 (1−E1y)y

1−2E1y
. (3.38)
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Therefore we can in fact easily choose a simpler controlling function P̂ for P [cf. (3.25) ]:

P̂ = |u(a)|−1 (1− E1y)y

1− 2E1y
. (3.39)

Then the negative correspondence of P̂ is simply the following,

P̂neg = 2|u(a)|−1y − P̂ = |u(a)|−1 (1− 3E1y)y

1− 2E1y
, (3.40)

and we can explicitly write down the inverse function of P̂neg by solving y from (3.40) to obtain

y neg(P̂neg) [which, by Lemma 2.4 (1), must be a controlling function on P̂neg (although it is not

obvious to see) ]

(i) y neg(P̂neg) =
1 + E1t−A(t)

6E1

∣∣∣
t=P̂ neg

with

(ii) A(t) =
(

1− 8E1|u(a)|t+ 4E2
1|u(a)|2t2

) 1
2

=
(

1− α1|u(a)|E1t
) 1

2
(

1− α2|u(a)|E1t
) 1

2
, (3.41)

where 0 < α1 := 2
2+
√

3
< α2 := 2

2−
√

3
. By Lemma 2.3, we have

A(t)Et
(

1− α1|u(a)|E1t
)− 1

2
(

1− α2|u(a)|E1t
)− 1

2
Et
(

1− α2|u(a)|E1t
)−1

. (3.42)

Using this, by comparing the coefficients of ti (with t = P̂neg) in (3.41) (i) with that in the

right-hand side of the following, we obtain

y neg(P̂neg)EP̂ neg
|u1(a)|P̂neg +

α2
2|u1(a)|2E1P̂

2
neg

1− α2|u1(a)|E1P̂neg

. (3.43)

From this, one easily sees that the right-hand side of (3.31) converges when P is set to |P0| because

the right-hand side of (3.43) converges when P̂neg is set to |P0|. Thus the proof of Lemma 3.3 (1)

is easier (we have used the above proof in Lemma 3.3 as it can be adapted in some more general

situation). Furthermore, by (3.31), (3.43) and Lemma 2.3, we have

1

y(P )
EP

1

|u1(a)|P
(

1− α2
2|u1(a)|E1P

1−α2|u1(a)|E1P

) . (3.44)

From this we also see that when we regard y−1 as a series of P , it converges absolutely when

setting (x, P ) to (a, P0).

Now we return to our proof of Theorem 1.3. By Lemma 3.3 (3), we are now safe to set (x, y) to

(0, 1) and (1, 1) [which is equivalent to setting (x, P ) to (0, P0) and (1, P0) respectively] in (3.27) (ii)

to obtain

0 = Ĝ(1, 1)− Ĝ(0, 1) =
∞∑

j=−mG

(
cj(1)− cj(0)

)
P j0 . (3.45)

We will need the following very simple fact for any possible j,

cj(1)− cj(0) =

∫ 1

0

dcj(x)

dx
dx, (3.46)
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which is obvious if cj(x) is a real function. To see this in general, noting that cj(x) ∈ C[x, u−1
1 ], we

can write cj(x) = ĉ1j(x)+ i ĉ2j(x) with ĉtj(x) =
c̃tj(x)

(u1ū1)nj
for some c̃tj(x) ∈ R[x] (t = 1, 2), nj ∈ Z>0

and ū1 = 1+β̄1x+β̄2x(1−x), where β̄1, β̄2 are the complex conjugate numbers of β1, β2 [cf. (3.14) ].

Note that u1ū1 ∈ R[x] and u1ū1|x=a = |u1(a)|2 > δ2 when 0 ≤ a ≤ 1 by (3.15). Thus ĉtj(x) is

a well defined real rational function when 0 ≤ x ≤ 1, and we have ĉtj(1) − ĉtj(0) =
∫ 1

0
dĉtj(x)
dx dx.

Thus (3.46) holds.

Denote

Q := −J(F̂ , Ĝ)
(∂F̂
∂y

)−1
= −u1y

−2
(∂F̂
∂y

)−1
, (3.47)

where the last equality follows from (3.19). Take the Jacobian of F̂ with (3.27) (ii), by (3.19) and

(3.47), we obtain [by regarding Q as in C(x)((y))],

Q =
∞∑

j=−mG

dcj
dx

P j . (3.48)

Since Q has the form (3.47), by Lemma 3.3, we see that when we expand Q as a power series on

P [that is, (3.48) ] and when P is set to P0, the series [i.e, (3.48) ] must converge absolutely and

uniformly for x ∈ [0, 1] := {x ∈ R | 0 ≤ x ≤ 1}. This together with (3.45), (3.46) and (3.48) implies

0 =
∞∑

j=−mG
(cj(1)− cj(0))P j0 =

∞∑
j=−mG

∫ 1

0

dcj
dx

P j0dx

=

∫ 1

0

∞∑
j=−mG

dcj
dx

P j0dx =

∫ 1

0
Q
∣∣
P=P0

dx =

∫ 1

0
Q
∣∣
y=Y0(x)

dx

= m−1

∫ 1

0
dx+O(E)1 = m−1 +O(E)1, (3.49)

which is a contradiction, where the sixth equality of (3.49) follows from (3.47), (3.28) and (3.29),

and the fifth follows by noting that Q
∣∣
P=P0

means that we need to express Q as an element in

C(x)[[P ]] [i.e., use (3.27) (i) to substitute y, that is exactly the equation (3.48) ] then set P to P0,

which is equivalent to directly setting y to Y0(x) in Q [cf. (3.28) ]. This means that if (3.3) holds,

then we must have (3.4), i.e., we have Theorem 1.3. �

Remark 3.5. From the proof of Theorem 1.3, we see that it is enough to take, for example, s0

to be (where mG = degG)

s0 = αα, where α = 2(m+mG)2 +
∑
i,j

(
|Coeff(F, xiyj)|+ |Coeff(G, xiyj)|

)
. (3.50)

4. Proof of Theorem 1.4

Proof of Theorem 1.4. Obviously, Ak0,k1 defined in (1.16) is nonempty by assumption (1.15). To

prove the boundness of Ak0,k1 , assume, for i = 1, 2, ...,

(p0i, p1i) =
(
(x0i, y0i), (x1i, y1i)

)
∈ Ak0,k1 , (4.1)
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is a sequence such that the height hp0i,p1i →∞. By definition, we have |x0i| = k0, |x1i| = k1. Thus

|y0i| = hp0i,p1i or |y1i| = hp0i,p1i . In any case, at least one inequation of (1.13) is violated. Hence

Ak0,k1 is bounded.

To prove the closeness of Ak0,k1 , let (4.1) be a sequence converging to some (p0, p1) =(
(x0, y0), (x1, y1)

)
∈ C4. Then σ(p0) = σ(p1) and |x0| = k0, |x1| = k1. We must have p0 6= p1

[otherwise, the local bijectivity of σ does not hold at the point p0, cf. arguments after (7.3) ], i.e.,

(p0, p1) ∈ Ak0,k1 , and so Ak0,k1 is a closed set in C4, namely, we have Theorem 1.4 (i). From this,

we see that γk0,k1 in (1.17) is well-defined.

Now we prove Theorem 1.4 (iii). We will prove (1.18) (b) [the proof for (1.18) (a) is similar, but

simpler, cf. Remark 4.2]. First we claim

γ0,0 > 0. (4.2)

To see this, by definition, there exists
(
(0, ỹ0), (0, ỹ1)

)
∈ A0,0 for some ỹ0, ỹ1 ∈ C with ỹ0 6= ỹ1,

thus also
(
(0, ỹ1), (0, ỹ0)

)
∈ A0,0. By definition, γ0,0 ≥ max{|ỹ0|, |ỹ1|} > 0, i.e., we have (4.2).

Fix k0 > 0. For any given k′1 > 0, let

β = max{γk0,k1 | k1 ≤ k′1}

= max
{
|y1|

∣∣ (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ V, |x0| = k0, |x1| ≤ k′1

}
. (4.3)

Assume conversely that there exists k1 < k′1 with γk0,k1 = β. We want to use the local bijectivity

of Keller maps to obtain a contradiction. Let E > 0 be a parameter such that E → 0 [cf. Convention

2.1 (3) ]. Let

(p̃0, p̃1) =
(
(x̃0, ỹ0), (x̃1, ỹ1)

)
∈ V with |x̃0| = k0, |x̃1| = k1, |ỹ1| = β. (4.4)

Set (and define G̃0, G̃1 similarly)

F̃0 = F (x̃0 + x, ỹ0 + y), F̃1 = F (x̃1 + x, ỹ1 + y). (4.5)

Denote

ã0 = Coeff(F̃0, x
1y0), b̃0 = Coeff(F̃0, x

0y1), ã = Coeff(F̃1, x
1y0), b̃ = Coeff(F̃1, x

0y1). (4.6)

We use c̃0, d̃0, c̃, d̃ to denote the corresponding elements for G̃0, G̃1. Then A0 = (ã0
b̃0

c̃0
d̃0

) and A = (ã
b̃
c̃
d̃
)

are invertible 2× 2 matrices such that detA0 = detA = J(F,G) = 1. For the purpose of proving

Theorem 1.4 (iii), we can replace (F,G) by (F,G)A−1
0 , then A0 becomes A0 = I2 (the 2×2 identity

matrix), and AA−1
0 becomes the new A. Then we can write [here “≡ ” means equal modulo terms

with degrees ≥ 3 by defining deg x = deg y = 1]

F̃0 ≡ x+ β̃1x
2 + β̃2xy + β̃3y

2, F̃1 ≡ ãx+ b̃y + α̃1x
2 + α̃2xy + α̃3y

2,

G̃0 ≡ y + ã1x
2 + ã2xy + ã3y

2, G̃1 ≡ c̃x+ d̃y + ã4x
2 + ã5xy + ã6y

2, (4.7)

for some ãi, α̃i, β̃i ∈ C, where, by subtracting F̃i (resp., G̃i) by the constant αF = F (x̃0, ỹ0) [resp.,

αG = G(x̃0, ỹ0) ], we have assumed F̃i, G̃i do not contain constant terms.
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For any s, t, u, v ∈ C, denote

q0 := (ẋ0, ẏ0) = (x̃0 + sE, ỹ0 + tE), q1 := (ẋ1, ẏ1) = (x̃1 + uE, ỹ1 + vE). (4.8)

The local bijectivity of Keller maps says that for any u, v ∈ C (cf. Remark 4.1), there exist s, t ∈ C
such that (q0, q1) ∈ V , where (s, t) is uniquely determined from (u, v) by the equation(

F̃0(sE, tE), G̃0(sE, tE)
)

=
(
F̃1(uE, vE), G̃1(uE, vE)

)
. (4.9)

Remark 4.1. When we consider the local bijectivity of Keller maps, we always assume u, v ∈ C
are bounded by some fixed s ∈ R>0 (which is independent of E, and we can assume E as small as

we wish, for instance E < s−s
s
).

In fact we can easily use (4.7) to solve s, t up to O(E)1 as follows,

s = s0 +O(E)1, s0 = ãu+ b̃v. (4.10)

We want to choose suitable u, v such that

(i) |ẋ0| = |x̃0 + sE| = |x̃0| ( = k0 > 0 ) , (ii) |ẏ1| = |ỹ1 + vE| > |ỹ1| ( = β ) . (4.11)

First assume ã 6= 0 in (4.10). Then we can easily first choose v to satisfy (4.11) (ii), then choose u to

satisfy (4.11) (i) [cf. (4.10); we can also regard s as a free variable and solve u = ã−1(s− b̃v)+O(E)1

from (4.10), and then using the fact that x0 6= 0 we can solve s from (4.11) (i) as in (4.16) below].

Since |x1| = k1 < k′1, we automatically have |ẋ1| < k′1 [as E � 1, cf. (4.8) ]. This means that we

can choose (q0, q1) ∈ V with |ẋ0| = k0, |ẋ1| < k′1, but |ẏ1| > β, which is a contradiction with the

definition of β in (4.3).

Now assume ã = 0 (and so b̃ 6= 0, c̃ 6= 0). In this case the situation is more complicated.

Remark 4.2. Before continuing, we remark that the proof of (1.18) (a) is easier: in that case

condition (4.11) (i) should be replaced by the condition |x̃1 + uE| = |x̃1|, which can be easily

satisfied even in case k1 = 0 (i.e., x̃1 = 0). Thus (1.18) (a) holds.

Now we continue our proof. Since |x̃0| = k0 > 0, and |ỹ1| = β ≥ γk0,0 > γ0,0 > 0 [where the

first inequality follows from the definition of β in (4.3), the second from (1.18) (a) (cf. Remark

4.2), and the last from (4.2) ], we can rewrite (4.11) as [cf. (4.10) ]

(i)′ |1 + ŝE| = 1, (ii)′ |1 + v̂E| > 1, where v̂ = ỹ−1
1 v, ŝ = x̃−1

0 s, (4.12)

and regard v̂ as a new variable. In order for the convenience to make use of v̂, ŝ, we set [see also

arguments after (5.10) ],

F̂0 = x̃−1
0 F̃0(x̃0x, y), Ĝ0 = G̃0(x̃0x, y), F̂1 = x̃−1

0 F̃1(x, ỹ1y), Ĝ1 = G̃1(x, ỹ1y), (4.13)

and rewrite [cf. (4.7); we now use b, c, d, which are different from b̃, c̃, d̃ in (4.7), to denote the

coefficients of linear parts of F̂1, Ĝ1]

F̂0 =
∑
i≥2

aiy
i + x

(
1 +

∑
i≥1

âiy
i
)

+ · · · , F̂1 =
∑
i≥2

biz
i + by

(
1 +

∑
i≥1

b̂iz
i
)

+ · · · ,

Ĝ0 = y +
∑
i≥2

ciy
i + · · · , Ĝ1 = z +

∑
i≥2

diz
i + · · · , where z = cx+ dy, (4.14)
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for some ai, âi, bi, b̂i, ci, di ∈ C, and where we regard F̂1, Ĝ1 as polynomials on y, z and we omit

terms with x-degree ≥ 2 in F̂0 (or ≥ 1 in Ĝ0), and omit terms with y-degree ≥ 2 in F̂1 (or ≥ 1 in

Ĝ1), which will be irrelevant to our computations below. In this case, by (4.14), we can solve

ŝ = bv̂ +O(E)1. (4.15)

If bim 6= 0 [cf. Convention 2.1 (1) ], we can always choose suitable v̂ ∈ C with v̂re > 0 such that

both (i)′ and (ii)′ in (4.12) hold. Alteratively, we can also regard ŝ as a free variable [and solve

v̂ = b−1ŝ+O(E)1 from (4.15) ] and determine ŝ by solving ŝre from (4.12) (i)′ to obtain

ŝre =
−1 + (1− ŝ2

imE
2)

1
2

E
= − ŝ

2
imE
2

+O(E)3, (4.16)

then choose ŝim [with (b−1ŝ)re = breŝre+bimŝim
|b|2 = bimŝim

|b|2 +O(E)1 > 0 ] to satisfy (4.12) (ii)′.

Now assume b ∈ R 6=0. We claim that for at least one i ≥ 2, we have

(ai, ci) 6= (bi, di). (4.17)

Otherwise we would in particular obtain (and the like for G)

F (x̃0, ỹ0 + k) = x̃0F̂0

∣∣
(x,y)=(0,k)

= x̃0F̂1

∣∣
(x,y)=(k c−1,0)

= F (x̃1 + kc−1, ỹ1), i.e., (4.18)

σ(p̂0) = σ(p̂1) with

p̂0 = (x̂0, ŷ0) = (x̃0, ỹ0 + k), p̂1 = (x̂1, ŷ1) = (x̃1 + kc−1, ỹ1), (4.19)

for all k � 1 [cf. Convention 2.1 (3) ]. Then hp̂0,p̂1 ∼ k [when k � 1, cf. (3.6) ], and |x̂1 + ŷ1| ∼

k � h
m
m+1

p̂0,p̂1
, a contradiction with (1.13). Thus (4.17) holds. Let i0 ≥ 2 be the minimal i satisfying

(4.17). By replacing F̂j by F̂j +
∑2i0

i=2 βiĜ
i
j for some βi ∈ C and j = 0, 1, thanks to the term y in

Ĝ0, we can then suppose, for 2 ≤ i ≤ 2i0,

ai = 0. (4.20)

Now we need to consider two cases.

Case 1: Assume bk 6= 0 for some k ≤ 2i0. Take minimal such k ≥ 2. Setting [noting from (4.14)

that this amounts to setting y = v̂E = v̌Ek, z = wE in F̂1, Ĝ1, and setting x = ŝE, y = tE in F̂0, Ĝ0,

and letting F̂0 = F̂1, Ĝ0 = Ĝ1 to solve ŝ, t ],

v̂ = v̌Ek−1, u = c−1w − c−1d v̌Ek−1, (4.21)

and regarding v̌, w as new variables, we can then solve from (4.14) [cf. (4.10), (4.12) and (4.15);

observe that all omitted terms and all coefficients âi’s, b̂i’s do not contribute to our solution of ŝ

up to Ek] to obtain,

ŝ = (bv̌ + bkw
k)Ek−1 +O(E)k. (4.22)

Using this and the first equation of (4.21) in (4.12), one can then easily see that (4.11) have

solutions [by taking, for example, v̌ > 0 so that (ii)′ holds and then choosing w to satisfy (i)′ ].

Case 2: Assume bi = 0 for 0 ≤ i ≤ 2i0. By computing the following coefficients, for i ≥ 1,

Coeff

(
J(F̂0, Ĝ0), x0yi

)
= 0 = Coeff

(
J(F̂1, Ĝ1), x0yi

)
, (4.23)
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and induction on i for 1 ≤ i < i0, one can easily obtain [using (4.20) and noting that i0 is the

minimal i satisfying (4.17) ],

âi = b̂i for i < i0, and âi0 6= b̂i0 . (4.24)

In this case, by setting [the first equation below means that v̌E contributes a positive O(E)2i0

element to the left-hand side of (4.12) (ii)′ since it does not have a real part, in particular (4.12) (ii)′

holds],

v̂ = v1iE
i0−1, u = c−1w − c−1dv1iE

i0−1, (4.25)

for v1 ∈ R 6=0, we can then solve from (4.14) to obtain, for some nonzero b′′ ∈ C [by (4.24); all

omitted terms in (4.14) do not contribute to our solution of ŝ up to E2i0 ],

ŝE = bv1iEi0 + b′′v1iw
i0E2i0 +O(E)2i0+1. (4.26)

Since b ∈ R 6=0, we see that (4.26) can only contribute an O(E)2i0 element to (4.12) (i)′. Using

(4.26) and the first equation of (4.25) in (4.12), one can again see that (4.11) have solutions by

choosing suitable w. This proves Theorem 1.4. �

5. Proof of Theorem 1.5 (1)

To prove Theorem 1.5 (1), let us make the following assumption [cf. Remark 1.6 (3) ].

Assumption 5.1. Assume Theorem 1.5 (1) is not true.

Under this assumption, we have

Lemma 5.2. For any δ ∈ R≥0, k, k0, k1 ∈ R>0 with k > 1, δ < 1
m , we have γk1+δk0,kk1 < kγk0,k1.

Proof. Assume the result is not true, then by choosing δ′ with δ < δ′ < 1
m and by Theorem 1.4 (iii),

we may assume γ k̄1+δ′k0,k̄k1 > k̄γk0,k1 for some k̄, k0, k1 ∈ R>0 with k̄ > 1. Thus we can choose

sufficiently small δ1, δ2 ∈ R>0 with δ1 < δ′ satisfying (the following holds when δ1 = δ2 = 0 thus

also holds when δ1, δ2 > 0 are sufficiently small)

k1+δ1
1

(
γ k̄1+δ′k0,k̄k1 + δ2

)
(k̄k1)1+δ1

>γk0,k1 + δ2. (5.1)

Take k � 1. We define V0 to be the subset of V consisting of elements (p0, p1) =
(
(x0, y0), (x1, y1)

)
satisfying [our aim is to design the following to satisfy Theorem 1.5 (1) ]

(a) 1 ≤
(
k−1

1 |x1|
)1+δ′−k−3

≤ k−1
0 |x0| ≤

(
k−1

1 |x1|
)1+δ′+k−3

≤ k1+δ′+k−3

,

(b)
|y1|+ δ2

|x1|1+δ1
≥
γ k̄1+δ′k0,k̄k1 + δ2

(k̄k1)1+δ1
. (5.2)

Then we can rewrite the above as the form in (1.19), and obviously we have (1.21). Further, by

definition, there exists

(p̌0, p̌1) =
(
(x̌0, y̌0), (x̌1, y̌1)

)
∈ V with |x̌0| = k̄1+δ′k0, |x̌1| = k̄k1, |y̌1| =γ k̄1+δ′k0,k̄k1 . (5.3)

Then one can easily see that (p̌0, p̌1) ∈ V0, i.e., V0 6= ∅.
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Let (p0, p1) ∈ V0. In (5.2) (a), if the equality occurs in the first inequality, or two equalities

simultaneously occur in the second and third inequalities, then we obtain that |x1| = k1, |x0| = k0,

but by (5.1), (5.2) (b), the definition of γk0,k1 and Theorem 1.4 (iii), we have

γk0,k1 =γ |x0|,|x1| ≥ |y1| ≥
|x1|1+δ1

(
γ k̄1+δ′k0,k̄k1 + δ2

)
(k̄k1)1+δ1

− δ2

=
k1+δ1

1

(
γ k̄1+δ′k0,k̄k1 + δ2

)
(k̄k1)1+δ1

− δ2 >γk0,k1 , (5.4)

which is a contradiction.

If the equality occurs in the last inequality of (5.2) (a), then one obtains that |x1| ∼ k , |x0| ∼

k1+δ′ when k � 1 [cf. (3.6); see Remark 5.3; note that kk−3

= 1 + O(k−1)3 ]. By (5.2) (b), we

have |y1| � |x1|1+δ1 ∼ k1+δ1 . Note that (1.14) in particular implies that either hp0,p1 ∼ |x0| ∼ |y0|

or hp0,p1 ∼ |x1| ∼ |y1|, in any case we obtain that hp0,p1 � k1+δ′ (in fact the latter case cannot

occur as |x1| = k ≺ k1+δ1 � |y1|). We have (where the part “� ” follows by noting from δ′ < 1
m

that |y1| � k1+δ1 � k � k
(1+δ′)m
m+1 )

|x1 + y1| ≥ |y1| − |x1| ∼ |y1| � k
(1+δ′)m
m+1 � h

m
m+1

p0,p1
, (5.5)

a contradiction with (1.13). This shows that Theorem 1.5 (1) holds, a contradiction with Assump-

tion 5.1. The lemma is proven. �

Remark 5.3. Note that when we design the system (5.2), k is simply some fixed positive real

number. When we say k � 1, it means that we may need to choose sufficiently large k such that

the system (5.2) can satisfy our requirement. This will also apply to some similar situations later.

Lemma 5.4. For any k0, k1 ∈ R>0, we have γk0,k1 > k1.

Proof. Assume the result is not true, then by choosing k′0 ∈ R>0 with k′0 < k0, we may assume

γk′0,k1 < k1, (5.6)

for some k′0, k1 > 0. Denote α =
γk′0,k1
k1

< 1 by (5.6). By Lemma 5.2, we haveγkk′0,kk1
< kγk′0,k1 =

kk1α for all k � 1. Let

(p0, p1) ∈ V with |x0| = kk′0, |x1| = kk1, |y1| =γkk′0,kk1
< kk1α. (5.7)

Then as in the proof of the previous lemma, we have hp0,p1 ∼ k when k � 1, but then

|x1 + y1| ≥ |x1| − |y1| > (1− α)kk1 > h
m
m+1

p0,p1
, (5.8)

which is a contradiction with (1.13). This proves Lemma 5.4. �

Now we fix sufficiently large k � 1. Take

(p̄0, p̄1) =
(
(x̄0, ȳ0), (x̄1, ȳ1)

)
∈ Ak ,k with |x̄0| = |x̄1| = k , |ȳ1| =γk ,k > k , (5.9)

where the inequality follows from Lemma 5.4. Similar to (4.5) (but not exactly), we define

F0 = F
(
x̄0(1 + x), ȳ0 + y

)
, F1 = F

(
x̄1(1 + x), ȳ1(1 + y)

)
, (5.10)
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and define G0, G1 similarly [thus the matrices A0, A defined after (4.6) now have determinants

detA0 = x̄0J(F,G) 6= 0, detA = x̄1ȳ1J(F,G) 6= 0, and again by replacing (Fi, Gi) by (Fi, Gi)A
−1
0

for i = 0, 1, we can assume A0 = I2]. Similar to (4.7), we can write [from now on, we only need

the linear parts of F,G ],

F0 ≡ x, F1 ≡ −akx+ bky, (5.11)

G0 ≡ y, G1 ≡ cx+ dy, (5.12)

where we have written the coefficients of x, y in F1 as −ak , bk to emphasis that they may depend

on k (of course other coefficients also depend on k) and that ak , bk are in fact positive as shown

in the next lemma.

We define q0, q1 accordingly [similar to, but a slightly different from, (4.8), simply due to the

different definitions in (5.10) and (4.5); we emphasis that the choice of E depend on k : in general

the larger k is, the smaller E; but in any case once k is chosen we can always choose sufficiently

small E, cf. also Remark 4.1],

q0 := (ẋ0, ẏ0) =
(
x̄0(1 + sE), ȳ0 + tE

)
, q1 := (ẋ1, ẏ1) =

(
x̄1(1 + uE), ȳ1(1 + vE)

)
. (5.13)

In particular, we have as in (4.10),

s = −aku+ bkv +O(E)1. (5.14)

The numbers ak , bk will play very crucial roles in our proofs in this section.

Lemma 5.5. We have ak > 0, bk > 0.

Proof. First assume ak im 6= 0 or ak re < 0 or bk im 6= 0 or bk re < 0 [cf. Convention 2.1 (1) ]. Then

from (5.14) one can easily choose u, v [with uim 6= 0, ure < 0, vim 6= 0, vre > 0 such that either

(aku)re > 0 or (bkv)re < 0, and so sre < 0] satisfying [cf. (5.13) and (5.14) ],

0 < k0 := |ẋ0| = k |1 + sE| < k , 0 < k1 := |ẋ1| = k |1 + uE| < k ,

|ẏ1| =γk ,k |1 + vE| >γk ,k , (5.15)

i.e., 0 < k0 < k and 0 < k1 < k with γk0,k1 ≥ |ẏ1| >γk ,k , a contradiction with Theorem 1.4 (iii).

Thus ak ≥ 0 and bk ≥ 0.

If ak = 0, similar to arguments after (4.12) [see also arguments after (7.7) ], we may have two

possible cases [cf. (4.21), (4.22) and (4.25), (4.26) ]:

v = v̂Ek−1, u = c−1w − c−1d v̂Ek−1, s = (bk v̂ + b′wk)Ek−1 +O(E)k, (5.16)

v = v1iE
i0−1, u = c−1w − c−1dv1iE

i0−1, sE = bkv1iE
i0 + b′′v1iw

i0E2i0 +O(E)2i0+1, (5.17)

where v̂, w ∈ C, v1 ∈ R6=0, b′, b′′ ∈ C6=0, k, i0 ∈ Z≥2. Assume we have the case (5.16) [the proof

for the case (5.17) is similar], we can first choose v̂ with v̂re > 0 so that the last inequation of

(5.15) holds, then choose w with (c−1w)re < −1 (sufficiently smaller than −1) and (b′wk)re < 0

(sufficiently smaller than −1, such w can be always chosen since k ≥ 2) such that the first two

inequations of (5.15) hold. Thus (5.15) holds, and as before we obtain a contradiction. Therefore

ak > 0. Similarly bk > 0. The lemma is proven. �
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Lemma 5.6. For any fixed N ∈ R>0, let δ′ ∈ R>0 be such that δ′ > ln(k)−N (where ln(·) is the

natural logarithmic function), we have k <γk,k < (1 + δ′)k.

Proof. By (1.14), when k � 1, we either have hp̄0,p̄1 ∼ |x0| ∼ |y0| or hp̄0,p̄1 ∼ |x1| ∼ |y1|. In any

case, hp̄0,p̄1 ∼ k . If γk ,k ≥ (1 + δ′)k , then when k � 1,

|x̄1 + ȳ1| ≥ |ȳ1| − |x̄1| ≥ δ′k ≥ ln(k)−Nk � k
m
m+1 ∼ h

m
m+1

p̄0,p̄1
, (5.18)

a contradiction with (1.13). �

Lemma 5.7. For any fixed δ ∈ R>0 with δ < 1
m , we have bk ≥ 1 + δ + ak for all k > 0.

Proof. Assume the lemma does not hold, then we can choose sufficiently small δ1 > 0 (which can

depend on k) such that

(1 + δ1)bk < 1 + δ − δ1 + ak . (5.19)

Let `� k (we can assume E < `−`, cf. Remark 4.1). We define V0 to be the subset of V consisting

of elements (p0, p1) =
(
(x0, y0), (x1, y1)

)
satisfying [again our purpose is to design the following to

satisfy Theorem 1.5 (1) ]

(i) 1≤
(
k−1|x1|

)1+δ−δ1−`−3

≤k−1|x0|≤
(
k−1|x1|

)1+δ≤ `1+δ, (ii)
γ−1

k ,k |y1|+E3(
k−1|x1|

)1+δ1
≥1+E2. (5.20)

Then we have (1.19) and (1.21).

Remark 5.8. Recall from statements inside the bracket before (5.13) and Remark 4.1 that when

k is fixed, E can be fixed, and we can assume E < `−` for any ` � k . We here emphasis that the

E used in the above design of the system of inequations in (5.20) is exactly the same as that used

in the local bijectivity of Keller maps in (5.13). There is no any problem in doing this since our

design does not need to use the local bijectivity of Keller maps, we only use the local bijectivity

of Keller maps to show that the set V0 we defined is nonempty [in the sense of defining the system

(5.20), `, k , E are simply some chosen (and fixed) positive real numbers, cf. Remark 5.3 ].

Let (p0, p1) ∈ V0. In (5.20) (i), if the equality occurs in the first inequality, or two equalities

simultaneously occur in the second and third inequalities, then |x1| = |x0| = k , but by (5.20) (ii),

|y1| >γk ,k , a contradiction with the definition of γk ,k .

If the equality occurs in the last inequality of (5.20) (i), then we can obtain that |x1| ∼ ` (when

`� k and k is regarded as fixed; cf. Remarks 5.3 and 5.8), |x0| � `1+δ, but by (5.20) (ii),

|y1| � `1+δ1 � |x1|. (5.21)

Again by (1.14), we must have either hp0,p1 ∼ |x0| ∼ |y0| or hp0,p1 ∼ |x1| ∼ |y1|. In any case we

have hp0,p1 � `1+δ < `1+ 1
m , but then |x1 + y1| ≥ |y1| − |x1| ∼ |y1| � h

m
m+1

p0,p1
, a contradiction with

(1.13). Hence Theorem 1.5 (1) (ii) holds.

Next, we want to choose suitable u, v such that (5.20) holds for (q0, q1) [defined in (5.13) ], i.e.,

(i) 1 ≤ |1 + uE|1+δ−δ1−`−3 ≤ |1 + sE| ≤ |1 + uE|1+δ ≤ `1+δ, (ii)
|1 + vE|+ E3

|1 + uE|1+δ1
≥ 1 + E2. (5.22)
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The strict inequality automatically holds in the last inequality of (5.22) (i) (we can assume E < `−`,

cf. Remark 4.1). We take

u = 1, v =
ak + 1 + δ − δ1

bk
, and s = 1 + δ − δ1 +O(E)1, (5.23)

where the last equation is obtained by (5.14). Then by comparing the coefficients of E1, one can

easily see that all inequalities in (5.22) (i) are strict inequalities. Further, the coefficient of E1 in

the left hand-side of (5.22) (ii) is ak+1+δ−δ1
bk

− (1 + δ1) > 0 by (5.19). We see that (q0, q1) ∈ V0, i.e.,

V0 6= ∅, a contradiction with Assumption 5.1. We have Lemma 5.7. �

Lemma 5.9. For any fixed δ ∈ R>0, we have (1− δ5)bk ≤ 1 + ak for all k� 1.

Proof. Let k � 1 and we assume E < k−k (cf. Remark 4.1). Define V0 to be the subset of V

consisting of elements (p0, p1) =
(
(x0, y0), (x1, y1)

)
satisfying [again our purpose is to design the

following to satisfy Theorem 1.5 (1); cf. Remarks 5.3 and 5.8 ]

(i) (1− δ5)1+k−3

≤
(
k−1|x1|

)1+k−3

≤ k−1|x0| ≤
(
k−1|x1|

)1−k−3

≤ 1,

(ii)
γ−1

k ,k |y1|+ E3(
k−1|x1|

)1−δ5 ≥ 1 + E2. (5.24)

We have (1.19) and (1.21).

Let (p0, p1) ∈ V0. If the equality occurs in the first inequality of (5.24) (i), then we obtain that

|x1| = (1− δ5)k , |x0| ≤ k , and by (5.24) (ii), Lemma 5.6, we have

|y1| > (1− δ5)1−δ5γk ,k >
(

1− δ5 + δ10 +O(δ)15
)
k > |x1|. (5.25)

As before, we would obtain that |x1 + y1| ≥ |y1| − |x1| ∼ |y1| � k � k
m
m+1 ∼ h

m
m+1

p0,p1
(when k � 1,

cf. Remarks 5.3 and 5.8), a contradiction with (1.13).

If two equalities simultaneously occur in the second and third inequalities of (5.24) (i), or the

equality occurs in the last inequality, then |x1| = |x0| = k , but by (5.24) (ii), |y1| > γk ,k , a

contradiction with definition (1.17). Hence Theorem 1.5 (1) (ii) holds.

Next, we want to choose suitable u, v such that (5.24) holds for (q0, q1) [defined in (5.13) ], i.e.,

(i) (1− δ5)1+k−3

≤ |1 + uE|1+k−3

≤ |1 + sE| ≤ |1 + uE|1−k
−3

≤ 1,

(ii)
|1 + vE|+ E3

|1 + uE|1−δ5
≥ 1 + E2. (5.26)

The strict inequality automatically holds in the first inequality of (5.26) (i). Take [the last equation

is obtained from (5.14) ]

u = −1, v = −1 + ak
bk

, and s = −1 +O(E)1. (5.27)

By comparing the coefficients of E1, we see that all inequalities in (5.26) (i) are strict inequalities.

Further, the coefficient of E1 in the left hand-side of (5.26) (ii) is 1− δ5− 1+ak
bk

, which is positive if
23



the assertion of the lemma is not true; in this case, we see that (q0, q1) ∈ V0, i.e., V0 6= ∅, and we

obtain a contradiction with Assumption 5.1, namely, we have Lemma 5.9. �

The above two lemmas show that ak ≥ 1−δ4(1+δ)
δ4

. Since δ is arbitrarily sufficiently small number,

we see that ak (thus also bk ) is unbounded, i.e.,

lim
k→∞

ak = lim
k→∞

bk =∞, and lim
k→∞

ak
bk

= 1. (5.28)

Remark 5.10. From the proofs above, one can see that in order to achieve our task, we must

choose the power of |x1| in (5.2) (b), (5.20) (ii) and (5.24) (ii) [i.e., κ8 in (1.19) ] to be different from

1. In case κ8 > 1 as in (5.23), we must choose v to be positive and v > κ8u [so that |y1| can grow

faster than |x1| as in (5.21) ]; while in case κ8 < 1 we must choose κ8 to be independent of k as

in (5.24) (ii), and choose v to be negative but bigger than κ8u as in (5.27) so that (5.22) (ii) and

(5.26) (ii) can hold [such choice of κ8 can guarantee that |y1| can descend much slower than |x1|
as in (5.25) ]. However because of (5.28), our task becomes extremely difficult, simply because of

the fact that any choice of v > κ8u will force s = −aku + bkv + O(E)1 to be too large [which in

turn will push |x0| to grow too fast], thus we have to choose v to be smaller than u, but such a

choice will force |y1| to grow slower (or descend faster) than |x1| and then we are unable to obtain

a contradiction if we use the previous design — this forces us to design a very complicated system

in (5.31).

Finally we are able to obtain the following (which is the most difficulty part of the paper).

Lemma 5.11. Theorem 1.5 (1) holds.

Proof. We first fix some choices of positive numbers satisfying,

1 � `0 := δ−1
0 � `1 := δ−1

1 � `2 := δ−1
2 � ` := δ−1 � k � E−1. (5.29)

For instance, it is enough to take `0 = 10100, `1 = ``00 , `2 = ``11 , ` = ``22 , k = (`s0)` [where s0 is

given in (3.50) ] and E < k−k . For any (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ V , we denote [recall from

(5.9), (5.28) that |x̄0| = |x̄1| = k , |ȳ1| =γk ,k , and α0 > 0],

X0 =
x0

x̄0
, X1 =

x1

x̄1
, Y1 =

y1

ȳ1
, X̃0 =

(
(1 + α0E)X0

)`
, α0 = `0bk − `40δ > 0. (5.30)

We now define V0 to be the subset of V consisting of elements (p0, p1) =
(
(x0, y0), (x1, y1)

)
satisfying

the following [one will see from the proof below why we have to design such a complicated system;

we suggest that readers do not need to check details at this moment — we will explain everything

when our arguments are carried on step by step so that all will become clear; note that throughout

the rest of this section, some multi-valued functions may appear in some expressions; for instance,

B1 defined in (5.31) (v) is a multi-valued function on X̃0, X1, Y1; from our arguments below one

can see that locally there always exists a unique choice of each multi-valued function satisfying

(5.31), therefore globally there exists a unique choice of each multi-valued function; in addition,
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all B1, B2, B3 are locally smooth functions on X̃0, X1, Y1],

(i) 1 ≤ |B1|
5δ0
8
−3δ20 ≤ |B2| ≤ |B1|

5δ0
8 ≤ `

5δ0
8

1 ,

(ii) (1− δ)|B1|−`
2
0 ≤ |X̃0| ≤ `2, (iii) (1− δ)|B1|`0−3 ≤ |X1| ≤ `2,

(iv) B′3 := |B3B
− `

2
0
2

+ 5
8

+
3δ0
8

1 |+(|x1|+ |y1|)E3≥ 1+E2, (v) B1 =
Y1

(
1
2

(
1+

δ20
2

)
+ 1

2

(
1− δ20

2

)
X̃2

0B
2`20
1

)
X

1+δ20+δ30
1 X̃0B2

3

,

(vi) B2 =
1

2− X̃0X
`20+2+2δ0−δ40
1 Y

−`20
1 B

`20
2
−`0+ 3

8
1

, (vii) B3 =
X
`20
1

X̃0Y
`20+1

1

. (5.31)

Then (5.31) can be rewritten as the form in (1.20). We remark that the main purpose of the initial

conditions (5.31) (ii), (iii) is to guarantee that we have (5.32) (2), (7), (8), which are extremely

crucial in the proof of Lemma 5.11.

Now we divide the proof of the lemma into three steps.

Step 1: We want to prove that when conditions (5.31) hold, we have the following [in particular,

we have (1.21) ],

(1) |X0| < |X̃0|δ = 1 +O(δ)1, (2) Y1 = X1 +O(δ)2, (3) B′′3 := |B3B
− `

2
0
2

+ 5
8

+
3δ0
8

1 | > 1,

(4) B1 = X̃0X
2−δ20−δ30
1

(1

2

(
1 +

δ2
0

2

)
+

1

2

(
1− δ2

0

2

)
X̃2

0B
2`20
1

)
+O(δ)2,

(5) B2 =
1

2− X̃0X
2+2δ0−δ40
1 B

`20
2
−`0+ 3

8
1

+O(δ)2, (6) B3 =
1

X̃0X1

+O(δ)2,

(7) (1− δ)|B1|−`
2
0 < |X̃0| < `2, (8) (1− δ)|B1|`0−3 < |X1| < `2,

(9) X̃0 =
A1

(
1−

√
1−

(
1− δ40

4

)
A2

)
1− δ20

2

, where

(10) A1 = Y −1X
δ20+δ30
1 B2

3B
−2`20+1
1 , (11) A2 = Y 2X

−2(δ20+δ30)
1 B−4

3 B
2`20−2
1 , (12) Y =

Y1

X1
. (5.32)

By (5.30), (5.31) (i), (ii), we obtain (5.32) (1). . To prove (5.32) (2), for the sake of convenience to

state our arguments, we regard k as a variable and take k � ` [which means that other elements

in (5.29) are regarded as fixed and we choose k to be sufficiently larger than `, cf. Remark 5.8; in

this sense, 1 ∼k `0 ∼k `1 ∼k `2 ∼k ` ≺k k ≺k E−1; here to avoid confusion, we use the subscript

“ k ” to indicate that k is regarded as a variable (similar notations will be also used below) ]. Then

|B1| ∼k |B2| ∼k 1 and |X0| �k 1 ∼k |X1| by (5.31) (i), (iii), (5.32) (1). By notations (5.9), (5.30),

we have |x0| = k |X0| �k k |X1| = |x1| ∼k k . Thus by (1.14), we must have

hp0,p1 ∼k |y1| ∼k |x1| ∼k k . (5.33)

Write x1 = −y1(1 + µ1) for some µ1 ∈ C, then by (1.13),

|y1µ1| = |x1 + y1| < h
m
m+1

p0,p1
∼k |y1|

m
m+1 , (5.34)
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i.e., µ1 �k |y1|−
1

m+1 ∼k k−
1

m+1 � δ2. Thus |µ1| = O(δ)2. Similarly, we can write x̄1 = −ȳ1(1+µ̄1)

with |µ̄1| = O(δ)2 (cf. Lemma 5.6). Hence

X1 =
(x̄−1

1 x1)Y1

ȳ−1
1 y1

=
(1 + µ1)Y1

1 + µ̄1
= Y1

(
1 +O(δ)2

)
,

which with (5.31) (iii) gives (5.32) (2). By notations (5.9), (5.30), and (5.31) (iii), (5.32) (4), we see

that (|x1|+ |y1|)E3 < E2, which with (5.31) (iv) implies (5.32) (3). By (5.31) (i)–(iii), (5.32) (2), we

have

a0+O(δ)1 = 1 +O(δ)1, a
(

1 +O(δ)1
)

= a+O(δ)1 for all a ∈ A0 or a−1 ∈ A0, where

A0 :=
{
X̃0, X1, Y1, B1, B2, B3,

(1

2

(
1+

δ2
0

2

)
+

1

2

(
1− δ2

0

2

)
X̃2

0B
2`20
1

)
, 2−X̃0X

2+2δ0−δ40
1 B

`20
2
−`0+ 3

8
1

}
.

Thus we have (5.32) (4)–(6) by (5.31) (v)–(vii). To prove (5.32) (7), (8), this time we regard `2 =

δ−1
2 as a variable (then 1 ∼`2 `0 ∼`2 `1 ≺`2 `2 ≺`2 ` ≺`2 k ≺`2 E−1). We have |B1| ∼`2 |B2| ∼`2 1

by (5.31) (i). Then |X̃0|, |X1|, |B3| �`2 1 by the first inequalities of (5.31) (i), (ii) and (5.32) (3).

Thus |X̃0| ∼`2 1 ∼`2, |X1| by (5.32) (6). In particular we have the last inequalities of (5.32) (7), (8).

Now assume (1− δ)|B1|−`
2
0 ≥ |X̃0|. Then by (5.31) (ii), |X̃0| = (1− δ)|B1|−`

2
0 . By (5.32) (3), (6),

and the fact that |B1| ≥ 1, we can obtain the following from (5.32) (4),

1 ≤
∣∣∣B−1

1 X̃
−1+δ20+δ30
0 B

−2+δ20+δ30
3

∣∣∣(1

2

(
1 +

δ2
0

2

)
+

1

2

(
1− δ2

0

2

)∣∣X̃0B
`20
1

∣∣2)+O(δ)2

≤ (1− δ)−1+δ20+δ30 |B1|−1−`20(−1+δ20+δ30)+(2−δ20−δ30)(− `
2
0
2

+ 5
8

+
3δ0
8

)

(
1+
(
− 1+

δ2
0

2

)
δ+O(δ)2

)
+O(δ)2

≤
(

1 +
(
− δ2

0

2
+O(δ0)3

)
δ +O(δ)2

)
|B1|−

1
4

+O(δ0)1 +O(δ)2

≤ 1 +
(
− δ2

0

2
+O(δ0)3

)
δ +O(δ)2 < 1, (5.35)

a contradiction. This proves (5.32) (7). Next assume (1 − δ)|B1|`0−3 ≥ |X1|. Then |X1| =

(1− δ)|B1|`0−3 by (5.31) (iii). By (5.31) (i), (5.32) (3), (5), (6), we obtain

2 ≤ |B2|−1 + |X̃0X
2+2δ0−δ40
1 B

`20
2
−`0+ 3

8
1 |+O(δ)2 ≤ |B1|−

5δ0
8 + |B−1

3 X
1+2δ0−δ40
1 B

`20
2
−`0+ 3

8
1 |+O(δ)2

≤ 1 + (1− δ)1+2δ0−δ40 |B1|−
`20
2

+ 5
8

+
3δ0
8

+(1+2δ0−δ40)(`0−3)+
`20
2
−`0+ 3

8 +O(δ)2

≤ 1 +
(

1 +
(
− 1 +O(δ0)1

)
δ +O(δ)2

)
|B1|−

45
8
δ0+O(δ0)2 +O(δ)2

≤ 2 +
(
− 1 +O(δ0)1

)
δ +O(δ)2 < 2, (5.36)

which is again a contradiction. This proves (5.32) (8). Finally, if we regard (5.31) (v) as an equation

on X̃0, then there are two solutions for X̃0, one is stated as in (5.32) (9). We prove as follows that

the other solution does not satisfy our requirement: note that locally there is only one choice

of X̃0, thus globally there is only one choice of X̃0; in Step 3, we will show that we can choose

(q0, q1) ∈ V0 such that (5.32) (9) holds; thus it holds globally.
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Step 2: Now let (p0, p1) ∈ V0. First assume in (5.31) (i), the equality occurs in the first inequality,

or two equalities simultaneously occur in the second and third inequalities. Then |B1| = |B2| = 1

and |B3| > 1 by (5.32) (3). We have |X̃0| ≤ 1 + O(δ)1, |X1| ≥ 1 + O(δ)1 by (5.32) (7), (8). Thus

by (5.32) (3), (6), we obtain

|a| = 1 +O(δ)1 for a ∈ A1 :=
{
X̃0, X1, Ỹ1 := Y1X

−(1+δ20+δ30)
1 , B3

}
. (5.37)

By (5.31) (vi), (v), we immediately obtain

(i) |X̃0| < |X
`20
1 Y

−`20−1
1 |, (ii) |Y1|2`

2
0+1 < |X1|2`

2
0+2+2δ0−δ40 , or |Y1| < |X1|1+

δ20
2

+O(δ0)3 . (5.38)

By (5.31) (v), we obtain (for convenience, we denote x 0 = |X̃0|, x 1 = |X1|, y = |Ỹ1|, b = |B3|;
since b > 1 we have the strict inequality),

1 ≤ yx−1
0 b−2

(1

2

(
1 +

δ2
0

2

)
+

1

2

(
1− δ2

0

2

)
x 2

0

)
< β1 := yx−1

0

(1

2

(
1 +

δ2
0

2

)
+

1

2

(
1− δ2

0

2

)
x 2

0

)
. (5.39)

We claim

(i) x 0 < y2`20+δ50 if y ≥ 1, or (ii) x 0 < y2`20−δ50 if y < 1. (5.40)

Say y ≥ 1 and x 0 ≥ y2`0+δ50 . Noting that β1 is a strictly decreasing function on x 0 when other

variables are fixed and when all variables satisfy (5.37) (since ∂β1
∂x0
|(x0,y)=(1,1) = − δ20

2 < 0 and

0 < δ � δ0), we obtain from (5.39),

1 < β1

∣∣∣
x0=y2`20+δ

5
0

= β2 := y−2`20+1−δ50
(1

2

(
1 +

δ2
0

2

)
+

1

2

(
1− δ2

0

2

)
y4`20+2δ50

)
. (5.41)

Noting that β2 is a strictly decreasing on y (as dβ2
dy |y=1 = − δ70

2 < 0), we obtain that y < 1, a

contradiction with the assumption. This proves (5.40) (i). Similarly, we have (5.40) (ii) if y < 1.

This shows that in general we have x 0 < y2`20+O(δ0)5 , i.e., |X̃0| < |Y 2`0+O(δ0)5

1 X
−2`20(1+δ20+δ30)+O(δ0)5

1 |.

Using this in (5.31) (vi), one can easily see that 1 < |Y `20+O(δ0)5

1 X
−`20−δ40+O(δ0)5

1 |, i.e., |X1|1+δ40 <

|Y1|1+O(δ0)5 . This with (5.38) (ii) implies that k := |Y1| > 1 and k1 := |X1| < k. Further k0 :=

|X0| < |X̃0|δ < 1 by (5.32) (1), (5.38) (i). By notations (5.9), (5.30), we see that |x1| = k1k < kk ,

|x0| = k0k < k < kk , |y1| = kγk ,k . We obtain [where the first inequality follows from Theorem

1.4 (iii), while the second from definition (1.17) ],

γkk ,kk >γ |x0|,|x1| ≥ |y1| = kγk ,k , (5.42)

which is a contradiction with Lemma 5.2.

Next assume in (5.31) (i), the equality occurs in the last inequality, i.e., |B1| = `1. By the second

and third inequalities of (5.31) (i), we have |B2| = `
5δ0
8

+O(δ0)2

1 �`1 1, which with (5.32) (5) implies

|X̃0X
2+O(δ0)1

1 B
`20
2

(1+O(δ0)1)

1 | = |X̃0X
2+2δ0−δ40
1 B

`20
2
−`0+ 3

8
1 | ∼`1 1. (5.43)

27



Note from (5.32) (4), (5.35) that α1 := |B−1
1 X̃0X

2−δ20−δ30
1 | �`1 |B1|−

1
4

+O(δ0)1 ≺`1 1. Thus (5.32) (4)

shows that we must have α2 := |X̃2
0B

2`20
1 | �`1 1 and

|X̃3
0X

2+O(δ0)1

1 B
2`20
1 | = |X̃

3
0X

2−δ20−δ30
1 B

2`20
1 | = α1α2 ∼`1 1. (5.44)

Thus we can easily obtain from (5.43), (5.44),

(i) |X̃0| ∼`1 |B1|−
3`20
4

(1+O(δ0)1), (ii) |X1| ∼`1 |B1|
`20
8

(1+O(δ0)1). (5.45)

From this and (5.32) (2), (6), (11), (12), we have

|A2| ∼`1 |X̃4
0X

4+O(δ0)1

1 B
2`20(1+O(δ0)1)
1 | ∼`1 |B1|−

`20
2

(1+O(δ0)1) ≺`1 1. (5.46)

Thus we can expand α3 := 1−
√

1−
(
1− δ40

4

)
A2 as a power series of A2 to obtain

α3 =
1

2

(
1− δ4

0

4

)
A2 +O(A2)1 ∼`1 A2. (5.47)

Then by (5.32) (9)–(12), we have

|X̃0| ∼`1 |A1A2| ∼`1 |X
0+O(δ0)1

1 B−2
3 B−1

1 | ∼`1 |X
2+O(δ0)1

1 X̃2
0B
−1
1 | ∼`1 |B1|−

5`20
4

(1+O(δ0)1), (5.48)

which is a contradiction with (5.45) (i).

Finally by (5.32) (7), (8), we see that no equality can occur in any inequality of (5.31) (ii), (iii).

This proves that Theorem 1.5 (1) (ii) holds.

Step 3: Now we want to choose suitable u, v such that (5.31) holds for (q0, q1). Note from

notations (5.9), (5.30) that setting (p0, p1) to (q0, q1) implies that X0, X1, Y1 are set to 1 + sE,

1 + uE, 1 + vE respectively. We take,

(i) u = 0, (ii) v = −`0, (iii) s = s0 +O(E)1 with s0 = −`0bk , (5.49)

where (5.49) (iii) is obtained from (5.14). Thus we obtain from (5.30) that X̃0 = 1 + s̃E + O(E)2

with s̃ = `(α0 + s0) = −`40. Then we see from (5.31) (vii) that B3 = 1 + c3E + O(E)2 with

c3 = `20u− s̃− (`20 + 1)v = `40 + `30 + `0. We can unique choose B1 of the form B1 = 1 + c1E +O(E)2

such that (5.31) (v) holds, where c1 is determined from (5.31) (v) as follows,

c1 = v − (1 + δ2
0 + δ3

0)u− s̃− 2c3 +
1

2

(
1− δ2

0

2

)
(2s̃+ 2`20c1), (5.50)

and we solve that c1 =
`20(4+4δ0−δ20+6δ30)

2−3δ20
. Then we see from (5.31) (vi) that B2 = 1 + c2E + O(E)2

with

c2 = s̃+ (`20 + 2 + 2δ0 − δ4
0)u− `20v +

(`20
2
− `0 +

3

8

)
c1 =

5`0
4
− 51

16
+O(δ0)1. (5.51)
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Then one can easily observe that both sides of (5.32) (9) are elements of the form 1 +O(E)1 [thus

(5.32) (9) holds for (q0, q1) ]. Now we obtain (note that c1 = 2`20 + 2`0 + 5
2 +O(δ0)1 ),

0 <
(5δ0

8
− 3δ2

0

)
c1 =

5`0
4
− 19

4
+O(δ0)1 < c2

<
5δ0c1

8
=

5`0
4

+
5

4
+O(δ0)1. (5.52)

We see that all inequalities in (5.31) (i) are strict inequalities. Obviously, all inequalities in

(5.31) (ii), (iii) are strict inequalities. Further, the coefficient of E1 in B′3 is

c′3 = c3 +
(
− `20

2
+

5

8
+

3δ0

8

)
c1 =

7

16
+O(δ0)1 > 0, (5.53)

i.e., the inequality in (5.31) (iv) is a strict inequality. Hence (q0, q1) ∈ V0, i.e., V0 6= ∅, and we

obtain a contradiction with Assumption 5.1. The above shows that Assumption 5.1 must be

wrong, namely, we have the lemma. �

6. Proof of Theorem 1.5 (2)

Proof of Theorem 1.5 (2). Now we prove Theorem 1.5 (2). Let (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ V0,

i.e., (1.19) or (1.20) [cf. (5.31) ] holds. Note that (1.19)–(1.21) imply that x0, x1, y1 6= 0. Similar

to (4.5) and (5.10), we define

F0 = F
(
x0(1 + x), y0 + y

)
, F1 = F

(
x1(1 + x), y1(1 + y)

)
, (6.1)

and define G0, G1 similarly. Define q0, q1 accordingly [similar to (4.8) and (5.13) ],

q0 := (ẋ0, ẏ0) =
(
x0(1 + sE), y0 + tE

)
, q1 := (ẋ1, ẏ1) =

(
x1(1 + uE), y1(1 + vE)

)
. (6.2)

As in (4.10) and (5.14), we have,

s = s0 +O(E)1, s0 = au+ bv. (6.3)

Remark 6.1. We remark that the E here shall be regarded to be different from that in the

previous results, here E may be much smaller than the previous E. If we denote the previous E as

E ′, whenever necessary we can assume our new E satisfies that E < E ′E
′−1

.

Now we consider two cases.

Case 1: First assume we have the case (1.19). If no equality occurs in any inequality of (1.19) (a),

then we only need to consider (1.22), which can be easily done. Thus by Theorem 1.5 (1) (ii), we

may assume that the equality occurs in the third inequality of (1.19) (a) [the proof is similar if the

equality occurs in the second inequality of (1.19) (a) ], i.e.,

κ′4 − 1 = 0, where κ′4 =
κ4|x1|κ5
κ3|x0|

. (6.4)

Then we only need to choose (q0, q1) to satisfy the third inequality of (1.20) (a) and (1.22). By

writing [using (6.3) ]

κ4|ẋ1|κ5
κ3|ẋ0|

=
∣∣(1 + uE)κ5(1 + sE)−1

∣∣ =
∣∣1 +

(
(κ5 − a)u− bv

)
E + · · ·

∣∣, (6.5)
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we need to choose u, v so that (q0, q1) satisfies the following, for some α̃i ∈ C,

(i) C1 :=
∣∣1 +

(
(κ5 − a)u− bv

)
E + (α̃3u

2 + α̃4uv + α̃5v
2)E2

∣∣− 1 +O(E)3 ≥ 0,

(ii) C2 := |1 + vE|+ κ′7 − (1 + κ′7)|1 + κ8uE + α̃6u
2E2|+O(E)3 > 0, (6.6)

where κ′7 = κ7|y1|−1, and (6.6) (ii) is obtained by rewriting (1.22) as |ẏ1|+κ7|y1| −
|y1|+κ7
|y1| ·

|ẋ1|κ8
|x1|κ8 > 0.

First assume b1 := κ5 − a 6= 0. Then by setting

u = bb−1
1 v + (α̃7v

2 + α̃8w)E, (6.7)

for some α̃i, w ∈ C with wre > 0 [cf. Convention 2.1 (1) (2) for notations “ re ’, “ im ” ] so that C1

can become [one can easily observe that when we substitute u in (6.6) (i) by (6.7), there are always

solutions of α̃7, α̃8 so that C1 can become the following form]

C1 = |1 + wE2| − 1 +O(E)3 = wreE
2 +O(E)3 > 0, (6.8)

i.e., (6.6) (i) holds. Using (6.7) in (6.3), we obtain, for some α̃i ∈ C,

s = α̃0v + (α̃1v
2 + α̃2w)E +O(E)2 . (6.9)

Using (6.7) and (6.9) in (6.6) (ii), we can then rewrite C2 as

C2 = |1 + vE|+ κ′7 − (1 + κ′7)
∣∣1 + α̃9vE + (α̃10v

2 + α̃11w)E2
∣∣+O(E)3 > 0, (6.10)

for some α̃i ∈ C. By comparing the coefficients of E1 in (6.10), we immediately obtain that if

c0 := 1− (1 + κ′7)α̃9 6= 0, then we can always choose v [with (c0v)re > 0 ] to satisfy (6.10).

Assume c0 = 0 (then α̃9 is real). Then we see that C2 in (6.10) is an O(E)2 element. In this

case, since we do not know what are values of α̃10, α̃11, our strategy is to compute the following

coefficient [cf. Convention 2.1 (2) for notation Coeff ; also note that we use v2
re to denote (vre)

2 ],

β̃ = β̃1 + β̃2 with β̃1 = Coeff(C2, v
2
reE

2) and β̃2 = Coeff(C2, v
2
imE

2). (6.11)

We observe the important fact that α̃10 does not contribute to β̃ by noting the following

(α̃10v
2E2)re =

(
α̃10 re(v

2
re − v2

im) + 2α̃10 imvrevim

)
E2, (6.12)

and that the imaginary part of α̃10v
2E2 can only contribute an O(E)4 element to C2 in (6.10). Thus

for the purpose of computing β̃, we may assume α̃10 = α̃11 = 0 (then the computation becomes

much easier). Since α̃9 is real, it is straightforward to compute that

β̃ =
κ′7

2(κ′7 + 1)
> 0, (6.13)

by (6.10) [remark: the fact that κ7 > 0, i.e., β̃ > 0 is very crucial for the inequation (6.10) being

solvable for any unknown α̃i ∈ C in (6.10), cf. Remark 6.2 ]. By (6.11) and (6.13), either β̃1 > 0

or β̃2 > 0, and we can then choose v with v2
re being sufficiently larger than v2

im or respectively

with v2
im being sufficiently larger than v2

re, to guarantee that (6.6) (ii) [i.e., (6.10) ] holds (when w

is fixed). This proves Theorem 1.5 (2) for the case that b1 6= 0.

Assume b1 = κ5 − a = 0. We simply set v = 0. Then we have the following.
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• If C1 in (6.6) (i) is independent of u, then C1 = 0, i.e., (6.6) (i) holds automatically, in this

case we can simply choose u with ure > 0 so that C2 = (1 + κ′7)κ8ureE + O(E)2 > 0, i.e.,

(6.6) (ii) holds.

• Otherwise, C1 = |1 + b′ukEk| − 1 + O(E)k+1 for some b′ ∈ C6=0 and k ∈ Z≥2, and we can

always choose u ∈ C with (b′uk)re > 0 and ure > 0 (such u always exists simply because

k ≥ 2) to guarantee that both of (6.6) hold.

This completes the proof of Theorem 1.5 (2) for the case (1.19).

Remark 6.2. (cf. Remark 1.6) Assume that we have the following inequation on variable u, where

α1, α2, β1, β2 ∈ R>0, and a1, a2, a3 ∈ C are some unknown complex numbers:

α1|1 + a1uE + a2u
2E2 + a3E2|β1 < α2|1 + uE|β2 + α1 − α2 +O(E)3. (6.14)

Then from the proof of (6.6), one can see that this inequation is solvable for any unknown

a1, a2, a3 ∈ C if and only if α1 > α2.

Case 2: Now assume we have the case (1.20). First we remark that we have designed the last two

terms in (1.20) (c) [cf. (5.31) (iii) ] in order that we can solve the inequations below. By Theorem

1.5 (1) (ii), no matter whether the equality occurs in the second or third inequality of (1.20) (a),

the two inequations we need to consider can be always stated as the following, for some α̃i ∈ C,

κ′0 ∈ R>0,

(i) C ′1 :=
∣∣1 + (α̃1u+ α̃2v)E

∣∣− 1 +O(E)2 ≥ 0,

(ii) C ′2 := κ′0
∣∣1 + (α̃3u+ α̃4v)E

∣∣+ |1 + uE|+ |1 + vE| − (κ′0 + 2) +O(E)2 > 0. (6.15)

First assume α̃1 6= 0. Then as in Case 1, we can take u = −α̃−1
1 α̃2v + (β1v

2 + β2w)E for some

βi, w ∈ C with wre > 0 so that C ′1 has the form as in (6.8) [i.e., (6.15) (i) holds ], and (6.15) (ii)

becomes the following [cf. (6.10) ], for some α̃i ∈ C,

C ′2 = κ′0
∣∣1 + α̃5vE + (α̃6v

2 + α̃7w)E2
∣∣+
∣∣1 + α̃8vE + (α̃9v

2 + α̃10w)E2
∣∣

+ |1 + vE| − (κ′0 + 2) +O(E)3 > 0. (6.16)

As in (6.10), we see that if c0 := κ′0α̃5 + α̃8 + 1 6= 0, we can always choose v ∈ C with (c0v)re > 0

to satisfy (6.16). Thus assume c0 = 0. Then as in (6.13), one can compute

β̃ := Coeff(C ′2, v
2
reE

2)+Coeff(C ′2, v
2
imE

2) =
1

2

(
(κ′0α̃5 re +1)2 +κ′0(κ′0 +1)α̃2

5 im +κ′0α̃
2
5 re +1

)
> 0. (6.17)

Thus we can choose v with v2
re being sufficiently larger than v2

im if Coeff(C ′2, v
2
reE

2) > 0 or with v2
im

being sufficiently larger than v2
re if Coeff(C ′2, v

2
imE

2) > 0, to guarantee that (6.16) holds (when w is

fixed). This proves Theorem 1.5 (2) for the case that α̃1 6= 0.

Now assume α̃1 = 0. By symmetry, we may also assume α̃2 = 0. Then we have one of the

following,

(i) C ′1 = 0, or (ii) C ′1 = |1 + g(u, v)Ek| − 1 +O(E)k+1, (6.18)

for some nonzero homogeneous polynomial g(u, v) of u, v of degree k ∈ Z≥2 [assume we have

(6.18) (ii) as (6.15) (i) holds trivially for case (6.18) (i) ]. In case c1 := κ′0α̃3 + 1 6= 0 [see (6.15) (ii) ],
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we can solve the problem as follows: First take v = αu for some α ∈ C with g(u, αu) 6= 0 [in

this case g(u, αu) = b′uk for some b′ ∈ C 6=0] and with |α| being sufficiently small, then we choose

u ∈ C with (c1u)re > 0 so that (6.15) (ii) holds [since |α| is sufficiently small (say we choose α with

0 < |α| � |c1|), our choice of u with (c1u)re > 0 can guarantee that (6.15) (ii) holds], and further

(b′uk)re > 0 (this can be done since k ≥ 2). If c2 := κ′0α̃4 + 1 6= 0, we can solve the problem

symmetrically.

Assume c1 = c2 = 0 [then C ′2 becomes an O(E)2 element]. One can easily compute as in Case 1,

Coeff(C ′2, u
2
reE

2) + Coeff(C ′2, u
2
im) = Coeff(C ′2, v

2
reE

2) + Coeff(C ′2, v
2
im) =

κ′0 + 1

2κ′0
> 0. (6.19)

If g(u, v) does not depend on v [i.e., g(u, v) = b′uk for some b′ ∈ C 6=0], then we can first choose

u ∈ C to satisfy that g(u, v)re > 0 then choose v ∈ C with v2
re being sufficiently larger than v2

im

if Coeff(C ′2, v
2
reE

2) > 0 or with v2
im being sufficiently larger than v2

re if Coeff(C ′2, v
2
imE

2) > 0, to

guarantee that Coeff(C ′2, E
2) > 0, i.e., (6.15) (ii) holds. Thus assume g(u, v) depends on v. We set

v = αu with α, u ∈ C being determined later such that |α| is sufficiently small. Then (6.18) (ii)

and (6.15) (ii) become the following, for some α̃11 ∈ C, and some non-constant polynomial g0(α)

of α [where the term −κ′−1
0 (1 + α)uE in C ′2 is obtained by the assumption that c1 = c2 = 0, i.e.,

α̃3 = −κ′−1
0 = α̃4 ],

(i) C ′1 = |1 + g0(α)ukEk| − 1 +O(E)k+1 ≥ 0,

(ii) C ′2 = κ′0|1− κ′−1
0 (1 + α)uE + α̃11u

2E|+ |1− uE|+ |1 + αuE| − (κ′0 + 2) +O(E)3 > 0. (6.20)

One can compute the following,

β := Coeff(C ′2, u
2
reE

2)+Coeff(C ′2, u
2
im) =

1

2κ′0

(
(αre +1)2 +α2

im +κ′0 +α2
imκ
′
0 +α2

reκ
′
0

)
> 0. (6.21)

We can always choose u ∈ C with u2
re being sufficiently larger than u2

im if Coeff(C ′2, u
2
reE

2) > 0 or with

u2
im being sufficiently larger than u2

re if Coeff(C ′2, u
2
imE

2) > 0, to guarantee that Coeff(C ′2, E
2) > 0,

i.e., (6.20) (ii) holds; and further (g0(α)uk)re > 0 by some suitable choose of α ∈ C [when |α| is

sufficiently small, one can guarantee that the choice of α does not affect the inequality in (6.20) (ii)

by noting that when |α| is sufficiently small, β defined in (6.21) is bigger than a positive number

which is independent of α ], i.e., (6.20) (i) holds.

This proves Theorem 1.5. �

7. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. To prove Theorem 1.2 (i), we use Theorem 1.5. Denote [cf. (1.19), (1.20) ]

L = {`p0,p1 | (p0, p1) ∈ V0}, ` = supL ∈ R>0 ∪ {+∞} (the supremum of L). (7.1)

By definition, there exists a sequence (p0i, p1i) :=
(
(x0i, y0i), (x1i, y1i)

)
∈ V0, i = 1, 2, ..., i.e.,

p0i 6= p1i and [assume we have case (1.19) as the proof for the case (1.20) is exactly similar],

σ(p0i) = σ(p1i), κ0 ≤ κ1|x1i|κ2 ≤ κ3|x0i| ≤ κ4|x1i|κ5 ≤ κ6, `i :=
|y1i|+ κ7

|x1i|κ8
≥ κ9, (7.2)
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such that limi→∞ `i = ` (cf. Remark 1.6). By (1.21), |x0i|, |x1i| are bounded. By (1.13), we see

that |y0i|, |y1i| are also bounded [as in the proof of Theorem 1.4 (i) ]. Thus ` ∈ R>0. By replacing

the sequence by a subsequence, we may assume

lim
i→∞

(p0i, p1i) = (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ C4. (7.3)

First suppose p0 = p1. Then by (7.3), for any neighborhood Op0 of p0, there exists N0 such

that p0i, p1i ∈ Op0 when i > N0, but p0i 6= p1i, σ(p0i) = σ(p1i), which is a contradiction with

the local bijectivity of Keller maps. Thus p0 6= p1. By taking the limit i → ∞ in (7.2), we see

that (1.21) is satisfied by x0, x1, y1 and all conditions in (1.19) hold for (p0, p1) [in case (1.20),

one can see from (5.31)–(5.32) that all functions fi’s on x0, x1, y1 are still well-defined]. Thus

(p0, p1) ∈ V0. Therefore by Theorem 1.5 (2), there exists (q0, q1) =
(
(ẋ0, ẏ0), (ẋ1, ẏ1)

)
∈ V0 such

that `q0,q1 > `p0,p1 = `, a contradiction with (7.1). This proves that (1.15) is not true, i.e., we have

Theorem 1.2 (i).

To prove Theorem 1.2 (ii), as in (4.4) and (5.10), take (p0, p1) =
(
(x0, y0), (x1, y1)

)
∈ V and set

(and define G0, G1 similarly)

F0 = F (x0 + α0x, y0 + y), F1 = F (x1 + α1x, y1 + y), where (7.4)

α0 =

{
1 if x0 = ξ0,

x0 − ξ0 else,
α1 =

{
1 if x1 = ξ1,

x1 − ξ1 else.
(7.5)

Define q0, q1 accordingly [cf. (4.8) and (5.13) ]. Then we have as in (4.10) and (6.3) [here we use

symbols a, b, c, d instead of ã, b̃, c̃, d̃ in (4.7), (4.10) ],

s = au+ bv +O(E)1. (7.6)

Note from Theorem 1.2 (i) that (x0, x1) 6= (ξ0, ξ1).

First suppose x0 6= ξ0, x1 6= ξ1 (then α0 = x0−ξ0, α1 = x1−ξ1). In this case, we need to choose

u, v such that,

C0 := β0|1 + sE|2 + β1|1 + uE|2 − (β0 + β1) < 0, (7.7)

where β0 = |x0− ξ0|2, β1 = |x1− ξ1|2. Using (7.6) in (7.7), we immediately see (by comparing the

coefficients of E1) that if b 6= 0 or a 6= −β0β
−1
1 , then we have a solution for (7.7). Thus assume

b = 0, a = −β1β
−1
0 [then d 6= 0 in (4.7) and a is real]. In this case, using arguments after (4.11),

we have the similar versions of either (4.21) and (4.22), or else (4.25) and (4.26), i.e.,

u = ûEk−1, v = d−1w − d−1cûEk−1, s = (aû+ b′wk)Ek−1 +O(Ek), or else (7.8)

u = u1iE
i0−1, v = d−1w − d−1cu1iE

i0−1, sE = au1iE
i0 + b′′u1iw

i0E2i0 +O(E2i0+1), (7.9)

for some b′, b′′, u, w ∈ C 6=0, u1 ∈ R 6=0, k, i0 ∈ Z>0, one can again find a solution for the inequation

(7.7).

Now if x0 = ξ0 (thus x1 6= ξ1), then the first term of C0 becomes |sE|2 = O(E)2 and we can

easily choose any u with ure < 0 to satisfy that C0 < 0. Similarly, if x1 = ξ1 (thus x0 6= ξ0), then

the second term of C0 becomes |uE|2 = O(E)2 and we can easily choose u with (au)re < 0 (in case

a 6= 0) or v with (bv)re < 0 (in case b 6= 0) to satisfy that C0 < 0. This proves Theorem 1.2. �
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Proof of Theorem 1.1. Finally we are able to prove Theorem 1.1. The second assertion of Theorem

1.1 follows from [8, 24]. To prove the first statement, assume conversely that there exists a Jacobian

pair (F,G) ∈ C[x, y]2 satisfying (1.5) such that (1.3) holds. Then we have Theorem 1.2. Similar to

the proof of Theorem 1.2, denote D = {dp0,p1 | (p0, p1) ∈ V } [cf. (1.9) ], and set d = inf D ∈ R≥0

(the infimum of D). By definition, there exists a sequence (p0i, p1i) :=
(
(x0i, y0i), (x1i, y1i)

)
∈ V ,

i = 1, 2, ..., such that limi→∞ dp0i,p1i = d . Then {x0i, x1i | i = 1, 2, ...} is bounded by (1.9). Thus

{y0i, y1i | i = 1, 2, ...} is also bounded by (1.13). By replacing the sequence by a subsequence, we

can then assume (7.3). Now arguments after (7.3) show that (p0, p1) ∈ V , but (x0, x1) 6= (ξ0, ξ1)

by Theorem 1.2 (i), i.e., d > 0. Then by Theorem 1.2 (ii), we can then obtain a contradiction with

the definition of d . This proves Theorem 1.1. �
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34



[20] L. Makar-Limanov, U. Turusbekova, U. Umirbaev, Automorphisms and derivations of free Poisson

algebras in two variables, J. Algebra 322 (2009), 3318–3330.

[21] C.B. Miranda-Neto, An ideal-theoretic approach to Keller maps, Proc. Edinburgh Math. Soc.,

doi:10.1017/S0013091519000099

[22] T.T. Moh, On the Jacobian conjecture and the configurations of roots, J. Reine Angew. Math. 340

(1983), 140–212.

[23] M. Nagata, Some remarks on the two-dimensional Jacobian conjecture, Chinese J. Math. 17 (1989),

1–7.

[24] D.J. Newman, One-one polynomial maps, Proc. Amer. Math. Soc. 11 (1960), 867–870.

[25] A. Nowicki, On the Jacobian conjecture in two variables. J. Pure Appl. Algebra 50 (1988), 195–207.

[26] K. Rusek, A geometric approach to Keller’s Jacobian conjecture, Math. Ann. 264 (1983), 315–320.

[27] S. Smale, Mathematical problems for the next century, Math. Intelligencer 20 (1998), 7-15.

[28] M.H. Shih, J.W. Wu, On a discrete version of the Jacobian conjecture of dynamical systems, Nonlinear

Anal. 34 (1998), 779–789.

[29] V. Shpilrain, J.T. Yu, Polynomial retracts and the Jacobian conjecture, Trans. Amer. Math. Soc. 352

(2000), 477–484.

[30] Y. Su, Poisson algebras, Weyl algebras and Jacobi pairs, arXiv:1107.1115v9.

[31] Y. Su, X. Xu, Central simple Poisson algebras, Science in China A 47 (2004), 245–263.

[32] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics
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